What is a Compiler?

Eelco Visser

]
TUDelft

CS4200 | Compiler Construction | September 2, 2021

This Lecture

Introduction

- What is a compiler?

- Why compilers?

- Meta-languages for language definition
- Language workbenches

- Project language

Course organization

What is a Compiler?

Etymology

Latin

Etymology

From con- (“with, together”) + pilo (“ram down?).
Pronunciation

» (Classical) IPAkev):; /kom'piz.loy/, [kom'pi:.tor]
Verb

compllo (present infinitive compilare, perfect active compilavi, supine
compilatum); first conjugation

1. | snatch together and carry off; plunder, pillage, rob, steal.

https://en.wiktionary.org/wiki/compilo#Latin

https://en.wiktionary.org/wiki/con-#Latin
https://en.wiktionary.org/wiki/pilo#Latin
https://en.wikipedia.org/wiki/Classical_Latin
https://en.wiktionary.org/wiki/Wiktionary:International_Phonetic_Alphabet
https://en.wiktionary.org/wiki/Appendix:Latin_pronunciation
https://en.wiktionary.org/wiki/compilare#Latin
https://en.wiktionary.org/wiki/compilavi#Latin
https://en.wiktionary.org/wiki/compilatum#Latin
https://en.wiktionary.org/wiki/Appendix:Latin_first_conjugation
https://en.wiktionary.org/wiki/snatch
https://en.wiktionary.org/wiki/carry
https://en.wiktionary.org/wiki/plunder
https://en.wiktionary.org/wiki/pillage
https://en.wiktionary.org/wiki/rob
https://en.wiktionary.org/wiki/steal

Dictionary

English
Verb

compile (third-person singular simple present compiles, present participle compiling, simple past and
past participle compiled)

1. (transitive) To put together; to assemble; to make by gathering things from various sources. Samuel
Johnson compiled one of the most influential dictionaries of the English language.

2. (obsolete) To construct, build. quotations

3. (transitive, programming) To use a compiler to process source code and produce executable code.
After | compile this program I'll run it and see If it works.

4. (intransitive, programming) To be successfully processed by a compiler into executable code. There
must be an error in my source code because it won't compile.

5. (obsolete, transitive) To contain or comprise. quotations

6. (obsolete) To write; to compose.

https://en.wiktionary.org/wiki/compile

https://en.wiktionary.org/wiki/compiles#English
https://en.wiktionary.org/wiki/compiling#English
https://en.wiktionary.org/wiki/compiled#English
https://en.wiktionary.org/wiki/Appendix:Glossary#transitive
https://en.wiktionary.org/wiki/Appendix:Glossary#obsolete
https://en.wiktionary.org/wiki/construct
https://en.wiktionary.org/wiki/build
https://en.wiktionary.org/wiki/Appendix:Glossary#transitive
https://en.wiktionary.org/wiki/programming
https://en.wiktionary.org/wiki/compiler
https://en.wiktionary.org/wiki/Appendix:Glossary#intransitive
https://en.wiktionary.org/wiki/programming
https://en.wiktionary.org/wiki/Appendix:Glossary#obsolete
https://en.wiktionary.org/wiki/Appendix:Glossary#transitive
https://en.wiktionary.org/wiki/contain
https://en.wiktionary.org/wiki/comprise
https://en.wiktionary.org/wiki/Appendix:Glossary#obsolete
https://en.wiktionary.org/wiki/write
https://en.wiktionary.org/wiki/compose

Etymology

The first compiler was written by Grace Hopper, in 1952, for the A-0
System language. The term compiler was coined by Hopper... The A-O
functioned more as a loader or linker than the modern notion of a compller.

https://en.wikipedia.org/wiki/History_of compiler_construction

https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/A-0_System
https://en.wikipedia.org/wiki/A-0_System
https://en.wikipedia.org/wiki/History_of_compiler_construction#cite_note-wikles1968-1
https://en.wikipedia.org/wiki/History_of_compiler_construction#cite_note-computerhistory.org-2
https://en.wikipedia.org/wiki/Linker_%28computing%29

Compiling = Translating

High-Level Low-Level

ELLITEL]S ELLUEL]S

A compiler translates high-level programs to low-level programs

Compiling = Translating

GCC translates C programs to object code for X86 (and other architectures)

Compiling = Translating

JVM

bytecode

A Java compiler translates Java programs to bytecode instructions for Java Virtual Machine

Architecture: Multi-Pass Compiler

A modern compiler typically consists of sequence of stages or passes

Intermediate Representations

component descriptions on next slides

Abstract Annotated

Syntax

Transformed AL
CodeGen
AST bytecode

A compiler is a composition of a series of translations between intermediate languages

Compiler Components

Abstract
Annotated Transformed JVM
Syntax CodeGen
AST bytecode

Abstract

Syntax

Compiler Components
Parser

Annotated Transformed JVM
CodeGen
AST » bytecode
 Reads in program text

 Checks that it complies with the syntactic rules of the language
* Produces an abstract syntax tree

e Represents the underlying (syntactic) structure of the program.

Abstract

Syntax

Compiler Components
Type checker

Annotated Transformed JVM
CodeGen
AST » bytecode
e Consumes an abstract syntax tree

* Checks that the program complies with the static semantic rules of the language
* Performs name analysis, relating uses of names to declarations of names
* Checks that the types of arguments of operations are consistent with their specification

Compiler Components

Abstract Annotated

Syntax

Optimizer

Transformed JVM
CodeGen
AST » bytecode
e Consumes a (typed) abstract syntax tree

* Applies transformations that improve the program in various dimensions
> execution time
> memory consumption
> energy consumption.

Compiler Components

Annotated Transformed » JVM
CodeGen
AST bytecode
Code generator

* Transforms abstract syntax tree to instructions for a particular computer architecture
e aka Iinstruction selection

Abstract

Syntax

Register allocator
* Assigns physical registers to symbolic registers in the generated instructions

Compiler = Front-end + Back-End

Annotated AVA\
CodeGen
AST bytecode

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Compiler = Front-end + Back-End

Front-End
Annotated CodeGen JVM
AST bytecode

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Compiler = Front-end + Back-End

Front-End Back-End
Annotated CodeGen JVM
AST bytecode

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Compiler = Front-end + Back-End

Front-End Back-End

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Repurposing Back-End

I Front-End
Front-End

Back-End
m

Repurposing: reuse a back-end for a different source language

Retargeting Compiler

I Front-End

Back-End
m
Front-End n Back-End

Retargeting: compile to different hardware architecture

Types of Compilers (1)

Compiler
- translates high-level programs to machine code for a computer

20

Types of Compilers (1)

Compiler
- translates high-level programs to machine code for a computer

Bytecode compiler
- generates code for a virtual machine

20

Types of Compilers (1)

Compiler
- translates high-level programs to machine code for a computer

Bytecode compiler

- generates code for a virtual machine
Just-in-time compiler

- defers (some aspects of) compilation to run time

20

Types of Compilers (1)

Compiler
- translates high-level programs to machine code for a computer

Bytecode compiler

- generates code for a virtual machine
Just-in-time compiler

- defers (some aspects of) compilation to run time

Source-to-source compiler (transpiler)
- translate between high-level languages

20

Types of Compilers (1)

Compiler
- translates high-level programs to machine code for a computer

Bytecode compiler
- generates code for a virtual machine

Just-in-time compiler
- defers (some aspects of) compilation to run time

Source-to-source compiler (transpiler)
- translate between high-level languages

Cross-compiler
- runs on different architecture than target architecture

20

Types of Compilers (2)

Interpreter

- directly executes a program (although prior to execution program is
typically transformed)

21

Types of Compilers (2)

Interpreter

- directly executes a program (although prior to execution program is
typically transformed)

Hardware compiler
- generate configuration for FPGA or integrated circuit

21

Types of Compilers (2)

Interpreter

- directly executes a program (although prior to execution program is
typically transformed)

Hardware compiler
- generate configuration for FPGA or integrated circuit

De-compiler
- translates from low-level language to high-level language

21

Why Compilers?

Programming = Instructing Computer

- fetch data from memory

- store data in register

- perform basic operation on data in register
- fetch instruction from memory

- update the program counter

- eflc.

23

"‘Computational thinking is the thought processes
iInvolved In formulating a problem and expressing its
solution(s) in such a way that a computer—human or

machine —can effectively carry out."

Jeanette M. Wing. Computational Thinking Benefits Society.
In Social Issues in Computing. January 10, 2014.
http://socialissues.cs.toronto.edu/index.html

Problem Solution
Domain Domain

Programming Is expressing intent

Problem Intermediate Solution
Domain Language Domain

linguistic abstraction

noun

I. aprogramming language construct that captures a programming design pattern
o the linguistic abstraction saved a lot of programming effort

o he introduced a linguistic abstraction for page navigation in web programming

2. the process of introducing linguistic abstractions

o linguistic abstraction for name binding removed the algorithmic encoding of name resolution

From Instructions to Expressions

mov &a, &C
add &b, &c
mov &a, &tl
sub &b, &tl
and &tl,&c

Source: http://sites.google.com/site/arch | utep/home/course_outline/translating-complex-expressions-into-asse

mbly-language-using-expression

-trees

http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

From Instructions to Expressions

mov &a, &cC C =
add &b, &c C +=
mov &a, &tl tl =
sub &b, &tl tl -=
and &tl,&cC c &= tl

S Q O Q

Source: http://sites.google.com/site/arch | utep/home/course_outline/translating-complex-expressions-into-asse

mbly-language-using-expression

-trees

http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

From Instructions to Expressions

mov &a, &cC C =
add &b, &c C +=

mov &a, &tl tl =

c =(a+b) & (a-b)

sub &b, &tl tl -=
and &tl,&c C &=

 © Q © QO

Source: http://sites.google.com/site/arch | utep/home/course_outline/translating-complex-expressions-into-asse

mbly-language-using-expression

-trees

http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

From Calling Conventions to Procedures

calc:
push eBP ; save old frame pointer
mov eBP,eSP ; get new frame pointer
sub eSP,localsize ; reserve place for locals
; perform calculations, leave result in AX
mov eSP,eBP ; free space for locals
pop eBP ; restore old frame pointer

paramsize ; free parameter space and return

push eAX ; pass some register result

rush byte[eBP+20] ; pass some memory variable (FASM/TASM syntax)
push 3 ; pass some constant

call calc ; the returned result 1s now in eAX

http://en.wikipedia.org/wiki/Calling_convention

http://en.wikipedia.org/wiki/FASM
http://en.wikipedia.org/wiki/TASM
http://en.wikipedia.org/wiki/Calling_convention

From Calling Conventions to Procedures

calc:
push eBP ; save old frame pointer
mov eBP,eSP ; get new frame pointer
sub eSP,localsize ; reserve place for locals
; perform calculations, leave result in AX
mov eSP,eBP ; free space for locals
pop eBP ; restore old frame pointer

paramsize ; free parameter space and return

push eAX ; pass some register result

rush byte[eBP+20] ; pass some memory variable (FASM/TASM syntax)
push 3 ; pass some constant

call calc ; the returned result 1s now in eAX

http://en.wikipedia.org/wiki/Calling_convention

def f(x)={ ... }| f(el)

function definition and call in Scala

http://en.wikipedia.org/wiki/FASM
http://en.wikipedia.org/wiki/TASM
http://en.wikipedia.org/wiki/Calling_convention

From Malloc to Garbage Collection

/* Allocate space for an array with ten elements of type int. */
int *ptr = (int*)malloc(10 * sizeof (1nt));
1f (ptr == NULL) {

/* Memory could not be allocated, the program

should handle the error here as appropriate. */
} else {

/* Allocation succeeded. Do something. */
free(ptr); /* We are done with the 1nt objects,

and free the associated pointer. */
ptr = NULL; /* The pointer must not be used again,

unless re-assigned to using malloc again. */

http://en.wikipedia.org/wiki/Malloc

http://en.wikipedia.org/wiki/Malloc

From Malloc to Garbage Collection

/* Allocate space for an array with ten elements of type int. */
int *ptr = (int*)malloc(10 * sizeof (1nt));
1f (ptr == NULL) {

/* Memory could not be allocated, the program

should handle the error here as appropriate. */
} else {

/* Allocation succeeded. Do something. */
free(ptr); /* We are done with the 1nt objects,

and free the associated pointer. */
ptr = NULL; /* The pointer must not be used again,

unless re-assigned to using malloc again. */

http://en.wikipedia.org/wiki/Malloc

int [] = new 1nt[10];
/* use 1t; gc will clean up Chopefully) */

http://en.wikipedia.org/wiki/Malloc

Linguistic Abstraction

design abstraction
language A _— language B

use new abstraction D

-~

identify pattern I

-

)

Language Design Methodology

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

Language Design
- What are adequate linguistic abstractions?

- Coverage: can language express everything in the domain?
» often the domain is unbounded; language design is making choice what to cover

- Minimality: but not more
> allowing too much interferes with multi-purpose goal

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

Language Design
- What are adequate linguistic abstractions?

- Coverage: can language express everything in the domain?
» often the domain is unbounded; language design is making choice what to cover

- Minimality: but not more
> allowing too much interferes with multi-purpose goal

Semantics
- What is the semantics of such definitions?
- How can we verify the correctness / consistency of language definitions”?

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

Language Design
- What are adequate linguistic abstractions?

- Coverage: can language express everything in the domain?
» often the domain is unbounded; language design is making choice what to cover

- Minimality: but not more
> allowing too much interferes with multi-purpose goal

Semantics
- What is the semantics of such definitions?
- How can we verify the correctness / consistency of language definitions”?

Implementation
- How do we derive efficient language implementations from such definitions?

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

Language Design
- What are adequate linguistic abstractions?

- Coverage: can language express everything in the domain?
» often the domain is unbounded; language design is making choice what to cover

- Minimality: but not more
> allowing too much interferes with multi-purpose goal

Semantics
- What is the semantics of such definitions?
- How can we verify the correctness / consistency of language definitions”?

Implementation
- How do we derive efficient language implementations from such definitions?

Evaluation
- Apply to new and existing languages to determine adequacy

31

Compiler Automates Work of Programmer

Problem General- Solution

: Purpose -
Domain P Domain

Language

Programmer Compiler

Compilers for modern high-level languages

- Reduce the gap between problem domain and program

- Support programming in terms of computational
concepts instead of machine concepts

- Abstract from hardware architecture (portability)

- Protect against a range of common programming errors

Domain-Specific
(Meta-) Languages

Domains of Computation

Problem General- Solution

Domain Purpose Domain
Language

Problem
Domain

General-
Purpose

Language

"A programming language Is low
programs reqguire attention to the

evel when Its

irrelevant”

Alan J. Perlis. Epigrams on Programming.
SIGPLAN Notices, 17(9):7-13, 1982.

Solution
Domain

Problem Doma_lf‘- General- Solution
Specific Purpose

Domain Domain

Language Language

Domain-specific language (DSL)
noun

1. a programming language that provides notation, analysis,
verification, and optimization specialized to an application
domain

2. result of linguistic abstraction beyond general-purpose
computation

Problem Dom?‘!‘- General- Solution
Specific Purpose

Domain Domain

Language Language

Problem Doma_lf‘- General- Solution
Specific Purpose

Domain Domain

Language Language

Making programming languages
IS probably very expensive?

Problem Domain- General- Solution

Domain Specific Purpose Domain

Language Language

Making programming lang
IS probably very expensive?

:> Purpose G
Desi .
esign Language Editor (IDE)

Domain- General-
Specific Purpose
Language Language

Solution
Domain

Problem

Domain

Meta-Linguistic Abstraction

Declarative General-

Language Compiler +

Meta
Languages

Purpose

Design
J Language

Editor (IDE)

_ _ _

Applying compiler construction to the domain of compiler construction

General-
Purpose
Language

Solution

Problem

Domain Domain

Declarative General-
Meta Purpose
Languages Language

Compiler +

Language

Design Editor (IDE)

_ _ _

That also applies to the definition of (compilers for) general purpose languages

Language
Design

Declarative
Meta
Languages

Compiler +
Editor (IDE)

Language Design

Syntax Static Dynamic
. . . Transforms
Definition Semantics Semantics

Language Workbench

Meta-DSLs

Compiler +

Editor (IDE)

Language Design

Syntax Static Dynamic
. . . Transforms
Definition Semantics Semantics

Spoofax Language Workbench

Incremental Responsive Consistency

SDF3

Compiler Editor (IDE) Proof

Meta-Languages in Spoofax Language Workbench

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition

- context-free grammars + disambiguation + constructors + templates
- derivation of parser, formatter, syntax highlighting, ...

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition

- context-free grammars + disambiguation + constructors + templates
- derivation of parser, formatter, syntax highlighting, ...

Statix: Names & Types

- name resolution with scope graphs

- type checking/inference with constraints

- derivation of name & type resolution algorithm

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition

- context-free grammars + disambiguation + constructors + templates
- derivation of parser, formatter, syntax highlighting, ...

Statix: Names & Types

- name resolution with scope graphs

- type checking/inference with constraints

- derivation of name & type resolution algorithm

Stratego: Program Transformation

- term rewrite rules with programmable rewriting strategies
- derivation of program transformation system

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition

- context-free grammars + disambiguation + constructors + templates
- derivation of parser, formatter, syntax highlighting, ...

Statix: Names & Types

- name resolution with scope graphs

- type checking/inference with constraints

- derivation of name & type resolution algorithm

Stratego: Program Transformation

- term rewrite rules with programmable rewriting strategies
- derivation of program transformation system

FlowSpec: Data-Flow Analysis

- extraction of control-flow graph and specification of data-flow rules
- derivation of data-flow analysis engine

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition

- context-free grammars + disambiguation + constructors + templates
- derivation of parser, formatter, syntax highlighting, ...

Statix: Names & Types

- name resolution with scope graphs

- type checking/inference with constraints

- derivation of name & type resolution algorithm

Stratego: Program Transformation
- term rewrite rules with programmable rewriting strategies
- derivation of program transformation system

FlowSpec: Data-Flow Analysis
- extraction of control-flow graph and specification of data-flow rules
- derivation of data-flow analysis engine

DynSem: Dynamic Semantics
- specification of operational (natural) semantics
- derivation of interpreter

45

Spoofax in Action

46

Spoofax in Action

Education

- Compiler Construction (Minidava, ChocoPy)
- Language Engineering Project (2020: Ada, C, ChocoPy, FlowSpec)

46

http://conf.researchr.org

Spoofax in Action

Education
- Compiler Construction (Minidava, ChocoPy)
- Language Engineering Project (2020: Ada, C, ChocoPy, FlowSpec)

Research
- Language Engineering, Language Prototyping

46

http://conf.researchr.org

Spoofax in Action

Education
- Compiler Construction (Minidava, ChocoPy)
- Language Engineering Project (2020: Ada, C, ChocoPy, FlowSpec)

Research
- Language Engineering, Language Prototyping

Academic Workflow Engineering
- WebDSL (conf.researchr.org, WebLab, MyStudyPlanning, EvaTool)

46

http://conf.researchr.org

Spoofax in Action

Education

- Compiler Construction (Minidava, ChocoPy)
- Language Engineering Project (2020: Ada, C, ChocoPy, FlowSpec)

Research
- Language Engineering, Language Prototyping

Academic Workflow Engineering
- WebDSL (conf.researchr.org, WebLab, MyStudyPlanning, EvaTool)

Industry

- Oracle Labs: Graph Analytics
- Canon: Several DSLs

- Philips: Software Restructuring

46

http://conf.researchr.org

Language Development with
a Language Workbench

® NN

Programming Environment (IDE)

i al O | e

% Package Explor 22 =0

A4

-— .
=¥

» 45 Other Projects

¥ 11) Web programming
> g_:l EntityLang
¥ tz=> NBlog

» (=
» (=
>
v (P

_atc

images

styles

tests
action-test.nwi
entity-test.nwl

| template-test.nwi

. blog.nwi

!
J

calendar.nwl
comments.nw!
preferences.nwi

» = nwi

> = researchr

» L) Stratego

vava 4 Li tbG'

NBlog/blog.nwl - Eclipse SDK

'

™ calendar.nwl

Transform v | v |« ¥

l

 J

module blog

entity Blog {
X author : U

ort S
name .

posts : §Yser

}

entity Post {

= O+ Outline £3

a =

q vBlog

url

Content completion

name
posts
author
v Post

Outline view

url : String (id)

title : String (name)

blog : Blog (inverse:post)
text : WikiText

— A
un
title

_blog

Code folding

author : Use

entity User

{ Press 'F2' for focus |~
* Problems 23 _rrogress| gy Lonsole

4 errors, 1 warning, O others
Description

v) Errors (4 items)

3 Entity 'Blog' has no property ‘post’
 Type 'U' is not defined

4 Search—

text

- onle o o

Error markers

v

= =)

A Resource

blog.nwi
blog.nwi

Reference resolving

Location

line 13
line 7

«€

—

Writable

Smart Insert

‘T%\ Hover help

Proble
Probler -

»

Architecture: IDE vs Compiler

Grammar and Parser (A) Presentation (B)

Grammar *
(concrete and
abstract syntax)

Permissive grammar

(error recovery rules) Outline view Syntax highlighting Code folding

Semantic (D) Editing (C)

Reference resolving

Hover heip (name analysis)

Code generation Bracket matching Bracket insertion Comment insertion

Error/warning marking Content completion Occurrence highlighting Automatic indentation Code formatter Syntax completion

JVM
J CodeG

Language Workbench: Live Language Development

& entities.str @ primitives.str] *EntityLang.sdf 23 1 example.ent 23

-module EntitylLang 1 1 —module example

imports Common entity User {
name : String
exports password : String

X homepage : URI
context-free start-symbols }

Start

context-free syntax = example.aterm 53

“"module"” ID Definition= Start {cons("Module")} Entityl

"entity" ID "{" Propertyx "}" Definition {cons("Entity")} "User"

ID ":" Type Property {cons("Property")} , [Property("name", Type("String"))

ID Type {cons("Type")} , Property("password", Type("String"))

ID "es" T , Property("homepage", Type("URI"))
k!::llllllllllllllllll l

)

ChocoPy: Project
L anguage

ChocoPy: A Typed Restricted Subset of Python 3

Binary-search trees ChocoPy is a programming language designed for classroom use in undergraduate compilers courses.
class TreeNode(object):

value:int = @
left:"TreeNode" = None language is fully specified using formal grammar, typing rules, and operational semantics. ChocoPy is used

right:"TreeNode™ = None to teach CS 164 at UC Berkeley. ChocoPy has been designed by Rohan Padhye and Koushik Sen, with

def insert(self:"TreeNode", x:int) — bool: substantial contributions from Paul Hilfinger.

if x < self.value:

if self.left is None: Atag]ance, ChocoPyis;
self.left = makeNode(x)

e_LS'::‘tU"“ True Familiar: ChocoPy programs can be executed directly in a Python (3.6+) interpreter. ChocoPy programs

return self.left.insert(x) can also be edited using standard Python syntax highlighting.

e'LlI P XS ;US:eHg :1?1;: .None : Safe: ChocoPy uses Python 3.6 type annotations to enforce static type checking. The type system
self.right = makeNode(x) supports nominal subtyping.
return True
else:
return self.right.insert(x) computer science. This can be a hugely rewarding exercise for students.
return False

ChocoPy is a restricted subset of Python 3, which can easily be compiled to a target such as RISC-V. The

Concise: A full compiler for ChocoPy be implemented in about 12 weeks by undergraduate students of

Expressive: One can write non-trivial ChocoPy programs using lists, classes, and nested functions. Such

def contains(self:"TreeNode", x:int) — bool: language features also lead to interesting implications for compiler design.
if x < self.value:

if self.left is None:
return False

else: the reference Python implementation on non-trivial benchmarks.
return self.left.contains(x)

elif x > self.value:

if self.right is None:
return False

else:
return self.right.contains(x)

tee: Source: https://chocopy.org/

Bonus: Due to static type safety and ahead-of-time compilation, most student implementations outperform

https://chocopy.org/

A Compiler and IDE for ChocoPy

(9 binary_tree.cpy 23\ (@ binary_tree.rv32im 23\

51 else: -equlv @SD?ké 9t : p
52 return self.root.contains(x) -equlv @print_string,
53 .equ%v @pr}nt_?har, 11
54 def makeNode(x: int) — TreeNode: -equiv @rint_int, 1

55 b:TreeNode = None .equ%v @ex1§2,t1? g
56 b = TreeNode() .equiv @read_string,

57 b.value = X .equiv @Fill_line_buffer, 18
58 return b -equlv @.__obj_size__, 4

59 .equiv @.__len__, 12

.equiv @.__int 12

.equiv @

ChocoPy IDE with syntax checking, syntax L. Compiler from ChocoPy to RISC-V (CS4200-B)

. . .equiv (@
Colorlng, type CheCklng (CS4200'A) .equiv @error_div_zero, 2
65 # Data -equiv @error_arg, %
66 t:Tree = None -0quly @error_oob,
- .equiv @error_none, 4
67 1:1nt 0) . 5
68 k:int = 37813 -equiv @error_oom,
69 .equ%v @efror_nyl, 6
70 # Crunch -equlv @LlistHeaderWords, 4
B .equiv (@bool.True, const_39
Y iv @ool.Fal t_38
72 while i < n: .equiv @bool.False, const_

73 t.insert/(k)|

74 k = (k * 37813) % 37831
75 if 1 % c = 0:

76 t.insert(i)

;Z teied 28 _ward 0

79 print(t.size) ‘2| binary_tree.result.txt 23\
80 1175

81 for i in [4, 8, 15, 16, 23, 42]: 215

B if temtaim(l): P Executing RISC-V with simulator

84 5

—’

.data

26 .globl $object$prototype
27 $object$prototype:

ChocoPy: Language Manual and Reference

ChocoPy v2.2: Language Manual and Reference

Designed by Rohan Padhye and Koushik Sen; v2 changes by Paul Hilfnger

University of California, Berkeley

November 23, 2019

Contents
1 Introduction

2 A tour of ChocoPy
2.1 The top level
2.2 Functions
2.3
24
2.5

2.5.1 Integers

N
t 2.5.2 Booleans
r e I n 2.5.3 Strings
z l z l 2.54
| 2.5.5 Objects of user-defined classes

2.5.6

2.5.7 The empty list ([])

Expressions

2.6.1 Literals and identifiers

2.6.2 List expressions

2.6.3 Arithmetic expressions

2.6.4 Logical expressions

2.6.5 Relational expressions

2.6.6 Conditional expressions

2.6.7 Concatenation expressions

2.6.8 Access expressions

2.6.9 Call expressions

Type annotations

Statements

2.8.1 Expression statements

2.8.2 Compound statements: conditionals and loops
2.8.3 Assignment statements

2.8.4 Pass statement

2.8.5 Return statement

2.8.6 Predefined classes and functions

Studying Compiler
Construction

The Basis

Java CodeGen JVIN
bytecode

Levels of Understanding Compilers

Specific
- Understanding a specific compiler

- Understanding a programming language (ChocoPYy)
- Understanding a target machine (RISC-V)

- Understanding a compilation scheme (ChocoPy to RISC-V)

57

Levels of Understanding Compilers

Specific
- Understanding a specific compiler

- Understanding a programming language (ChocoPYy)
- Understanding a target machine (RISC-V)

- Understanding a compilation scheme (ChocoPy to RISC-V)

Architecture
- Understanding architecture of compilers

- Understanding (concepts of) programming languages
- Understanding compilation techniques

57

Levels of Understanding Compilers

Specific

- Understanding a specific compiler

- Understanding a programming language (ChocoPYy)

- Understanding a target machine (RISC-V)

- Understanding a compilation scheme (ChocoPy to RISC-V)

Architecture
- Understanding architecture of compilers

- Understanding (concepts of) programming languages
- Understanding compilation techniques

Domains

- Understanding (principles of) syntax definition and parsing
- Understanding (principles of) static semantics and type checking
- Understanding (principles of) dynamic semantics and interpretation/code generation

57

Levels of Understanding Compilers

Specific

- Understanding a specific compiler

- Understanding a programming language (ChocoPYy)

- Understanding a target machine (RISC-V)

- Understanding a compilation scheme (ChocoPy to RISC-V)

Architecture

- Understanding architecture of compilers

- Understanding (concepts of) programming languages
- Understanding compilation techniques

Domains

- Understanding (principles of) syntax definition and parsing
- Understanding (principles of) static semantics and type checking
- Understanding (principles of) dynamic semantics and interpretation/code generation

Meta
- Understanding meta-languages and their compilation

57

Course Topics

e static semantics and type checking
> name binding, hame resolution, scope graphs
> types, type checking, type inference, subtyping

- concrete syntax, abstract syntax
- context-free grammars

- derivations, ambiguity, disambiguation, » unification, constraints
associativity, priority e semantic editor services

- parsing, parse trees, abstract syntax trees, terms e data-flow analysis

- pretty-printing » control-flow, data-flow

- parser generation > monotone frameworks, worklist algorithm

- syntactic editor services Dynamics

e dynamic semantics and interpreters

e operational semantics, program execution

e virtual machines, assembly code, byte code
e code generation

e memory management, garbage collection

Transformation

- rewrite rules, rewrite strategies
- simplification, desugaring

58

CS4200: Two Courses

CS4200-A: Front-End (5 ECTS)

- Syntax and Type Checking

- Project: Build front-end of compiler for ChocoPy in Spoofax
- Exam in October

CS4200-B: Back-End (5 ECTS)

- Analysis and Code Generation

- Project: Build back-end of compiler for ChocoPy in Spoofax
- Exam in January

59

Lectures Topics CS4200-A (Tentative)

- What is a compiler?

- Syntax Definition

- Disambiguation and Layout-Sensitive Syntax
- Syntactic Editor Services

- Static Semantics & Name Resolution

- Type Checking

- Specification with Statix

- Constraint Resolution

- Parsing

60

Lectures Topics CS4200-A (Tentative)

- What is a compiler?

- Syntax Definition

- Disambiguation and Layout-Sensitive Syntax
- Syntactic Editor Services

- Static Semantics & Name Resolution
- Type Checking

- Specification with Statix

- Constraint Resolution

- Parsing

Lectures: Thursday, 10:45 11:00

60

Lectures Topics CS4200-A (Tentative)

- What is a compiler?
- Syntax Definition

- Disambiguation and Layout-Sensitive Syntax
- Syntactic Editor Services

- Static Semantics & Name Resolution
- Type Checking

- Specification with Statix

- Constraint Resolution

- Parsing

Lectures: Thursday, 10:45 11:00

Extra Lecture: Friday, Sept 3, 13:45

60

Lectures Topics CS4200-A (Tentative)

- What is a compiler?
- Syntax Definition

- Disambiguation and Layout-Sensitive Syntax
- Syntactic Editor Services

- Static Semantics & Name Resolution
- Type Checking

- Specification with Statix

- Constraint Resolution

- Parsing

Lectures: Thursday, 10:45 11:00

Extra Lecture: Friday, Sept 3, 13:45

Lab: Tuesday, 10:45, 13:45

60

Lecture Topics CS4200-B (Q2) (Tentative)

- Virtual Machines

- Transformation

- Code Generation

- Data-Flow Analysis

- Monotone Frameworks
- Register Allocation

- Memory Management

o1

Brightspace: Announcements

Course Home Content Collaboration v Assignments Ouriginal Grades Course Admin Help

e

=

> = 15|

jel1n ay

e g 1=

s ‘ﬂ o, :
L

, .

CS4200-A Compiler Construiction A (2021/22 Q1)

Announcements W Quick Eval w

Mattermost v

Posted 01 September, 2021 15:56 Calendar

We have a mattermost team "¢s4200-21-22" for the course. Please don't use it to
share solutions to exercises. But questions and discussions are welcome. The
invitation link is Updates v

https:/mattermost.tudelft.nl/signup_user_complete/?
id=rqc7kcuh7pbgfg8fnytz4qgmaby

-- Eelco

Website and Lectures Week 1 +

Posted 30 August, 2021 18:47

Dear Compiler Engineers,
The website for the course is up at:
https:/tudelft-cs4200.github.io/2021/

It contains the tentative lecture schedule, reading assignments, and project
assignments. Note that the material will be updated for this year. But this gives you
an idea of the material to expect.

Course Website

TU Delft | CS4200 Lectures Homework Project News Blog

TU Delft | CS4200 | 2021-2022

Compiler Construction

Schedule
00
D Q 0
400-A 0 o (Q)
D Q
Organization
400-B: B3 a ()
. j
.- - 0 - 0l = DO0Id alld dde O e dll environimnent 101 wue
e Q
Course Staff 3
D e proje

https://tudelft-cs4200.github.io/2021

WeblLab for Homework, Exams, Grade Registration

WebLab Courses Cohorts About ~ Admin Eelco Visser Sign out

CS4200 /

2021-2022
2 Enable Student Mode
© Course Edition ‘| Announcements = Course Rules E4 Students 2 2 Course Groups @A Edit Staff /~ Edit Edition =_Language Settings «» Plagiarism Scan

Compiler Construction

Course: CS4200 Edition: 2021-2022 Available from August 22, 2021 until January 31, 2022
Your Enroliment About the Course

machine code. Nowadays, compilers are typically integrated into development environments providing features like

P .
i Your Course Dossier syntax highlighting, content assistance, live error reporting, and continuous target code generation.

Your Submissions

This course studies the architecture of compilers and interactive programming environments and the concepts and
Unenroll technigues underlying the components of that architecture. For each of the components of a compiler we study the

formal theory underlying the language aspect that it covers, declarative specification languages to define compiler h - / / b I b d If I / 4 200 /20 2 1 20 2 2 /
components, and the techniques for their implementation. The concepts and techniques are illustrated by application to ttps L we a -tu e t- n CS -

Course Information small languages or language fragments.

See https://tudelft-cs4200.github.io/2021/ for lectures, assignment, and project information.
A Home

@ All editions / Edit
'l Course announcements

i= Course rules

il Assignments

2 Enrolled students 2 Active Assignments

® This is only visible for course managers and administrators
Course staff
Assignments with most submission edits from past 6 hours

Lecturers
« mwEelco Visser Load Assignments with most submission edits from past 6 hours

Assistants
« '@ Thijs Molendijk Upcoming Deadlines

« 'mwAron Zwaan
« @¥Ruben van Baarle No upcoming deadlines

Configure Staff

Sign in to WebLab using “Single Sign On for TU Delft”

WebLab Courses About Sign in

Welcome to WeblLab

U Delft you should use

Single Sign On for TU Delft

>asing WebLab, an account will be created automaticglly, linked to your netid.

T Q
-6N

-

Re ..‘;3: (for Non-TU Delft Students) #*

Username Email

or Email

First

Name

m Forgot password Last

Name

Password

Username
Password

Password®

s o

Enroll for Course CS54200 in WebLab

WebLab Courses Cohorts About ~ Admin Eelco Visser Sign out

CS4200 /

2021-2022
2 Enable Student Mode
© Course Edition ‘| Announcements = Course Rules E4 Students 2 2 Course Groups @A Edit Staff /~ Edit Edition =_Language Settings «» Plagiarism Scan

Compiler Construction

Course: CS4200 Edition: 2021-2022 Available from August 22, 2021 until January 31, 2022

Enroll About the Course

One can enrOQuntil Thu, Sep 30, 2021 12:00:00 & Compilers translate the source code of programs in a high-level programming language into executable (virtual)
machine code. Nowadays, compilers are typically integrated into development environments providing features like
syntax highlighting, content assistance, live error reporting, and continuous target code generation.

This course studies the architecture of compilers and interactive programming environments and the concepts and
technigues underlying the components of that architecture. For each of the components of a compiler we study the
formal theory underlying the language aspect that it covers, declarative specification languages to define compiler
components, and the techniques for their implementation. The concepts and techniques are illustrated by application to

f Home small languages or language fragments.
@ All editions

'l Course announcements See https://tudelft-cs4200.github.io/2021/ for lectures, assignment, and project information.
i= Course rules

il Assignments / Edit

A Enrolled students

Course Information

Course staff > Active Assignments

® This is only visible for course managers and administrators
Lecturers

« @¥Eelco Visser

Assignments with most submission edits from past 6 hours

Assistants
« @ Thijs Molendijk Load Assignments with most submission edits from past 6 hours
- @Aron Zwaan
- 'm¥Ruben van Baarle

Upcoming Deadlines
Configure Staff

No upcoming deadlines

Academic Misconduct

Academic Misconduct

All actual, detailed work on assignments must be individual work.
You are encouraged to discuss assignments, programming languages
used to solve the assignments, their libraries, and general solution
techniques in these languages with each other. If you do so, then you
must acknowledge the people with whom you discussed at the top of
your submission. You should not look for assignment solutions
elsewhere; but if material is taken from elsewhere, then you must
acknowledge its source. You are not permitted to provide or receive
any kind of solutions of assignments. This includes partial,
incomplete, or erroneous solutions. You are also not permitted to
provide or receive programming help from people other than the
teaching assistants or instructors of this course. Any violation of these
rules will be reported as a suspected case of fraud to the Board of
Examiners and handled according to the EEMCS Faculty’s fraud
procedure. If the case is proven, a penalty will be imposed: a minimum
of exclusion from the course for the duration of one academic year up
to a maximum of a one-year exclusion form all courses at TU Delft. For
details on the procedure, see Section 2.1.26 in the faculty’s Study
Guide for MSc Programmes.

Reading Material

ChocoPy: Language Manual and Reference

The reference manual of the course ChocoPy v2.2: Language Manual and Reference
p I"OJ e Ct -I_ ang uag e. Th e -I_ ang uag e '|_ S d Designed by Rohan Padhye and Koushik Sen; v2 changes by Paul Hilfnger

SU b Se t O 'F Pyt h on 3 University of California, Berkeley
November 23, 2019

Contents
1 Introduction

2 A tour of ChocoPy
2.1 The top level
2.2 Functions
2.3
24
2.5

2.5.1 Integers

H
t 2.5.2 Booleans
ar e a I n 253 Strings
2.54
| 2.5.5 Objects of user-defined classes

2.5.6

2.5.7 The empty list ([])
Expressions

2.6.1 Literals and identifiers
2.6.2 List expressions

2.6.3 Arithmetic expressions
2.6.4 Logical expressions

2.6.5 Relational expressions
2.6.6 Conditional expressions
2.6.7 Concatenation expressions
2.6.8 Access expressions

2.6.9 Call expressions

Type annotations

Statements

2.8.1 Expression statements
2.8.2 Compound statements: conditionals and loops
2.8.3 Assignment statements
2.8.4 Pass statement

2.8.5 Return statement

https . //Chocopy .0 r'g 2.8.6 Predefined classes and functions

https://chocopy.org

This award winning paper describes the design of the
Spoofax Language Workbench.

It provides an alternative architecture for
programming languages tooling from the compiler
pipeline discussed 1in this lecture.

Read the paper and make the homework assignments on
WebLab.

Note that the details of some of the technologies 1in
Spoofax have changed since the publication.

https://do1.0org/10.1145/1932682.1869497

The Spoofax Language Workbench

Rules for Declarative Specification of Languages and IDEs

Lennart C. L. Kats

Delft University of Technology
l.c.l.kats@tudelft.nl

Abstract

Spoofax i1s a language workbench for efficient, agile devel-
opment of textual domain-specific languages with state-of-
the-art IDE support. Spoofax integrates language processing
techniques for parser generation, meta-programming, and
IDE development into a single environment. It uses concise,
declarative specifications for languages and IDE services. In
this paper we describe the architecture of Spoofax and in-
troduce idioms for high-level specifications of language se-
mantics using rewrite rules, showing how analyses can be
reused for transformations, code generation, and editor ser-
vices such as error marking, reference resolving, and content
completion. The implementation of these services iIs sup-
ported by language-parametric editor service classes that can
be dynamically loaded by the Eclipse IDE, allowing new
languages to be developed and used side-by-side in the same
Eclipse environment.

Categories and Subject Descriptors D.2.3 [Software En-
gineering): Coding Tools and Techniques: D.2.6 [Software
Engineering]: Programming Environments

General Terms Languages

1. Introduction

Domain-specific languages (DSLs) provide high expressive
power focused on a particular problem domain [38, 47].
They provide linguistic abstractions over common tasks
within a domain, so that developers can concentrate on ap-
plication logic rather than the accidental complexity of low-
level implementation details. DSLs have a concise, domain-
specific notation for common tasks in a domain, and al-
low reasoning at the level of these constructs. This allows
them to be used for automated, domain-specific analysis,
verification, optimization, parallelization, and transforma-
tion (AVOPT) [38].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistnibute
to lists, requires prior specific permission and/or a fee.

OOPSLA/SPLASH'10, October 17-21, 2010, RenovTahoe, Nevada, USA.
Copyright ©) 2010 ACM 978- 1-4503-0203-/10/10.. . $10.00

Eelco Visser
Delft University of Technology
visser@acm.org

For developers to be productive with DSLs, good in-
tegrated development environments (IDEs) for these lan-
guages are essential. Over the past four decades, IDEs have
slowly risen from novelty tool status to becoming a funda-
mental part of software engineering. In early 2001, IntelliJ
IDEA [42] revolutionized the IDE landscape [17] with an
IDE for the Java language that parsed files as they were typed
(with error recovery in case of syntax errors), performed se-
mantic analysis in the background, and provided code nav-
igation with a live view of the program outline, references
to declarations of identifiers, content completion proposals
as programmers were typing, and the ability to transform
the program based on the abstract representation (refactor-
ings). The now prominent Eclipse platform, and soon af-
ter, Visual Studio, quickly adopted these same features. No
longer would programmers be satished with code editors
that provided basic syntax highlighting and a “build”™ button.
For new languages to become a success, state-of-the-art IDE
support 1s now mandatory. For the production of DSLs this
requirement 1s a particular problem, since these languages
are often developed with much fewer resources than general
purpose languages.

There are five key ingredients for the construction of a
new domain-specific language. (1) A parser for the synrax
of the language. (2) Semantic analysis to validate DSL pro-
grams according to some set of constraints. (3) Transfor-
mations manipulate DSL programs and can convert a high-
level, technology-independent DSL specification to a lower-
level program. (4) A code generator that emits executable
code. (5) Integration of the language into an IDE.

Traditionally, a lot of effort was required for each of these
ingredients. However, there are now many tools that support
the various aspects of DSL development. Parser generators
can automatically create a parsers from a grammar. Mod-
ern parser generators can construct efficient parsers that can
be used in an Interactive environment, supporting error re-
covery In case of syntax-incorrect or incomplete programs.
Meta-programming languages [3![10, 12,20, 35] and frame-
works [39,[57] make it much easier to specify the semantics
of a language. Tools and frameworks for IDE development
such as IMP [7. 8] and TMF [56]. simplify the implemen-
tation of IDE services. Other tools, such as the Synthesizer

This paper gives an overview of the Syntax
Definition Formalism SDF3, the language for syntax
definition 1n Spoofax and in this course.

It provides a summary of research on syntax
definition that we did in the last 20 years and
provides a good introduction to the features of SDF3
that we will study 1n the next couple of weeks.

https://doi.org/10.1007/978-3-030-58768-0_1

Multi-Purpose Syntax Definition with SDF3

Luis Eduardo Amorim de Souza! and Eelco Visser?

! Australian National University, Australia
2 Delft University of Technology, The Netherlands

Abstract. SDF3 is a syntax definition formalism that extends plain
context-free grammars with features such as constructor declarations,
declarative disambiguation rules, character-level grammars, permissive
syntax, layout constraints, formatting templates, placeholder syntax, and
modular composition. These features support the multi-purpose inter-
pretation of syntax definitions, including derivation of type schemas for
abstract syntax tree representations, scannerless generalized parsing of
the full class of context-free grammars, error recovery, layout-sensitive
parsing, parenthesization and formatting, and syntactic completion. This
paper gives a high level overview of SDF3 by means of examples and pro-
vides a guide to the literature for further details.

Keywords: Syntax definition - programming language - parsing.

1 Introduction

A syntax definition formalism is a formal language to describe the syntax of
formal languages. At the core of a syntax definition formalism is a grammar
formalism in the tradition of Chomsky’s context-free grammars [14] and the
Backus-Naur Form [4]. But syntax definition is concerned with more than just
phrase structure, and encompasses all aspects of the syntax of languages.

In this paper, we give an overview of the syntax definition formalism SDF3
and its tool ecosystem that supports the multi-purpose interpretation of syntax
definitions. The paper does not present any new technical contributions, but
it is the first paper to give a (high-level) overview of all aspects of SDF3 and
serves as a guide to the literature. SDF3 is the third generation in the SDF
family of syntax definition formalisms, which were developed in the context of
the ASF+SDF [5], Stratego/XT [10], and Spoofax [38] language workbenches.

The first SDF [23] supported modular composition of syntax definition, a di-
rect correspondence between concrete and abstract syntax, and parsing with the
full class of context-free grammars enabled by the Generalized-LR (GLR) pars-
ing algorithm [56,44|. Its programming environment, as part of the ASF+SDF
MetaEnvironment [40], focused on live development of syntax definitions through

To appear in: F. S. de Boer and A. Cerone (Eds.). Software Engineering and Formal
Methods (SEFM 2020), LNCS, Springer, 2020.

Next: Declarative Syntax
Definition
Friday, Sept 3 at 13:45!

