
What is a Compiler?

CS4200 | Compiler Construction | September 2, 2021

Eelco Visser

Introduction
- What is a compiler?

- Why compilers?

- Meta-languages for language definition

- Language workbenches

- Project language

Course organization

2

This Lecture

What is a Compiler?

3

Etymology

Latin
Etymology
From con- (“with, together”) + pīlō (“ram down”).

Pronunciation
	•	(Classical) IPA(key): /komˈpiː.loː/, [kɔmˈpiː.ɫoː]

Verb
compīlō (present infinitive compīlāre, perfect active compīlāvī, supine
compīlātum); first conjugation

	1.	 I snatch together and carry off; plunder, pillage, rob, steal.

https://en.wiktionary.org/wiki/compilo#Latin

https://en.wiktionary.org/wiki/con-#Latin
https://en.wiktionary.org/wiki/pilo#Latin
https://en.wikipedia.org/wiki/Classical_Latin
https://en.wiktionary.org/wiki/Wiktionary:International_Phonetic_Alphabet
https://en.wiktionary.org/wiki/Appendix:Latin_pronunciation
https://en.wiktionary.org/wiki/compilare#Latin
https://en.wiktionary.org/wiki/compilavi#Latin
https://en.wiktionary.org/wiki/compilatum#Latin
https://en.wiktionary.org/wiki/Appendix:Latin_first_conjugation
https://en.wiktionary.org/wiki/snatch
https://en.wiktionary.org/wiki/carry
https://en.wiktionary.org/wiki/plunder
https://en.wiktionary.org/wiki/pillage
https://en.wiktionary.org/wiki/rob
https://en.wiktionary.org/wiki/steal

Dictionary

English
Verb
compile (third-person singular simple present compiles, present participle compiling, simple past and
past participle compiled)

	1.	 (transitive) To put together; to assemble; to make by gathering things from various sources. Samuel

Johnson compiled one of the most influential dictionaries of the English language.

	2.	 (obsolete) To construct, build. quotations

	3.	 (transitive, programming) To use a compiler to process source code and produce executable code.

After I compile this program I'll run it and see if it works.

	4.	 (intransitive, programming) To be successfully processed by a compiler into executable code. There

must be an error in my source code because it won't compile.

	5.	 (obsolete, transitive) To contain or comprise. quotations

	6.	 (obsolete) To write; to compose.

https://en.wiktionary.org/wiki/compile

https://en.wiktionary.org/wiki/compiles#English
https://en.wiktionary.org/wiki/compiling#English
https://en.wiktionary.org/wiki/compiled#English
https://en.wiktionary.org/wiki/Appendix:Glossary#transitive
https://en.wiktionary.org/wiki/Appendix:Glossary#obsolete
https://en.wiktionary.org/wiki/construct
https://en.wiktionary.org/wiki/build
https://en.wiktionary.org/wiki/Appendix:Glossary#transitive
https://en.wiktionary.org/wiki/programming
https://en.wiktionary.org/wiki/compiler
https://en.wiktionary.org/wiki/Appendix:Glossary#intransitive
https://en.wiktionary.org/wiki/programming
https://en.wiktionary.org/wiki/Appendix:Glossary#obsolete
https://en.wiktionary.org/wiki/Appendix:Glossary#transitive
https://en.wiktionary.org/wiki/contain
https://en.wiktionary.org/wiki/comprise
https://en.wiktionary.org/wiki/Appendix:Glossary#obsolete
https://en.wiktionary.org/wiki/write
https://en.wiktionary.org/wiki/compose

Etymology

The first compiler was written by Grace Hopper, in 1952, for the A-0
System language. The term compiler was coined by Hopper.[1][2] The A-0
functioned more as a loader or linker than the modern notion of a compiler.

https://en.wikipedia.org/wiki/History_of_compiler_construction

https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/A-0_System
https://en.wikipedia.org/wiki/A-0_System
https://en.wikipedia.org/wiki/History_of_compiler_construction#cite_note-wikles1968-1
https://en.wikipedia.org/wiki/History_of_compiler_construction#cite_note-computerhistory.org-2
https://en.wikipedia.org/wiki/Linker_%28computing%29

Compiling = Translating

High-Level
Language

compiler Low-Level
Language

A compiler translates high-level programs to low-level programs

Compiling = Translating

C gcc X86

GCC translates C programs to object code for X86 (and other architectures)

Compiling = Translating

Java javac JVM
bytecode

A Java compiler translates Java programs to bytecode instructions for Java Virtual Machine

Architecture: Multi-Pass Compiler

Java Type Check JVM
bytecode

A modern compiler typically consists of sequence of stages or passes

Parse CodeGenOptimize

Intermediate Representations

Java Type Check JVM
bytecode

A compiler is a composition of a series of translations between intermediate languages

Parse CodeGenOptimize
Abstract
Syntax
Tree

Annotated
AST

Transformed
AST

component descriptions on next slides

Compiler Components

Java Type Check JVM
bytecode

Parse CodeGenOptimize
Abstract
Syntax
Tree

Annotated
AST

Transformed
AST

Compiler Components

Java Type Check JVM
bytecode

Parse CodeGenOptimize
Abstract
Syntax
Tree

Annotated
AST

Transformed
AST

Parser
•Reads in program text

•Checks that it complies with the syntactic rules of the language

• Produces an abstract syntax tree

•Represents the underlying (syntactic) structure of the program.

Compiler Components

Java Type Check JVM
bytecode

Parse CodeGenOptimize
Abstract
Syntax
Tree

Annotated
AST

Transformed
AST

Type checker
•Consumes an abstract syntax tree

•Checks that the program complies with the static semantic rules of the language

• Performs name analysis, relating uses of names to declarations of names

•Checks that the types of arguments of operations are consistent with their specification

Compiler Components

Java Type Check JVM
bytecode

Parse CodeGenOptimize
Abstract
Syntax
Tree

Annotated
AST

Transformed
AST

Optimizer
•Consumes a (typed) abstract syntax tree

• Applies transformations that improve the program in various dimensions

‣ execution time

‣ memory consumption

‣ energy consumption.

Compiler Components

Java Type Check JVM
bytecode

Parse CodeGenOptimize
Abstract
Syntax
Tree

Annotated
AST

Transformed
AST

Code generator
• Transforms abstract syntax tree to instructions for a particular computer architecture

• aka instruction selection

Register allocator
• Assigns physical registers to symbolic registers in the generated instructions

Compiler = Front-end + Back-End

Java Type Check JVM
bytecode

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Parse CodeGenOptimizeAnnotated
AST

Front-End

Compiler = Front-end + Back-End

Java Type Check JVM
bytecode

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Parse CodeGenOptimizeAnnotated
AST

Back-EndFront-End

Compiler = Front-end + Back-End

Java Type Check JVM
bytecode

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Parse CodeGenOptimizeAnnotated
AST

Back-EndFront-End

Compiler = Front-end + Back-End

C Type Check X86Parse CodeGenOptimizeLLVM

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Back-End

Front-End

Repurposing Back-End

C Type Check

X86

Repurposing: reuse a back-end for a different source language

Parse

CodeGenOptimizeLLVM

Front-End

C++ Type CheckParse

Back-EndFront-End

Retargeting Compiler

C Type Check X86

Retargeting: compile to different hardware architecture

Parse CodeGenOptimize

LLVM

Back-End

ArmCodeGenOptimize

Front-End

C++ Type CheckParse

Compiler
- translates high-level programs to machine code for a computer

20

Types of Compilers (1)

Compiler
- translates high-level programs to machine code for a computer

Bytecode compiler
- generates code for a virtual machine

20

Types of Compilers (1)

Compiler
- translates high-level programs to machine code for a computer

Bytecode compiler
- generates code for a virtual machine

Just-in-time compiler
- defers (some aspects of) compilation to run time

20

Types of Compilers (1)

Compiler
- translates high-level programs to machine code for a computer

Bytecode compiler
- generates code for a virtual machine

Just-in-time compiler
- defers (some aspects of) compilation to run time

Source-to-source compiler (transpiler)
- translate between high-level languages

20

Types of Compilers (1)

Compiler
- translates high-level programs to machine code for a computer

Bytecode compiler
- generates code for a virtual machine

Just-in-time compiler
- defers (some aspects of) compilation to run time

Source-to-source compiler (transpiler)
- translate between high-level languages

Cross-compiler
- runs on different architecture than target architecture

20

Types of Compilers (1)

Interpreter
- directly executes a program (although prior to execution program is

typically transformed)

21

Types of Compilers (2)

Interpreter
- directly executes a program (although prior to execution program is

typically transformed)

Hardware compiler
- generate configuration for FPGA or integrated circuit

21

Types of Compilers (2)

Interpreter
- directly executes a program (although prior to execution program is

typically transformed)

Hardware compiler
- generate configuration for FPGA or integrated circuit

De-compiler
- translates from low-level language to high-level language

21

Types of Compilers (2)

Why Compilers?

22

- fetch data from memory

- store data in register

- perform basic operation on data in register

- fetch instruction from memory

- update the program counter

- etc.

23

Programming = Instructing Computer

"Computational thinking is the thought processes
involved in formulating a problem and expressing its
solution(s) in such a way that a computer—human or

machine—can effectively carry out."

Jeanette M. Wing. Computational Thinking Benefits Society.

In Social Issues in Computing. January 10, 2014.

http://socialissues.cs.toronto.edu/index.html

Problem
Domain

Solution
Domain

Programming is expressing intent

Intermediate
Language

linguistic abstraction | liNGˈgwistik abˈstrakSHən |
noun
1. a programming language construct that captures a programming design pattern

 the linguistic abstraction saved a lot of programming effort
 he introduced a linguistic abstraction for page navigation in web programming

2. the process of introducing linguistic abstractions
 linguistic abstraction for name binding removed the algorithmic encoding of name resolution

Problem
Domain

Solution
Domain

From Instructions to Expressions

mov &a, &c
add &b, &c
mov &a, &t1
sub &b, &t1
and &t1,&c

Source: http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

From Instructions to Expressions

mov &a, &c
add &b, &c
mov &a, &t1
sub &b, &t1
and &t1,&c

Source: http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

c = a
c += b
t1 = a
t1 -= b
c &= t1

http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

From Instructions to Expressions

mov &a, &c
add &b, &c
mov &a, &t1
sub &b, &t1
and &t1,&c

Source: http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

c = a
c += b
t1 = a
t1 -= b
c &= t1

c = (a + b) & (a - b)

http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

From Calling Conventions to Procedures

calc:
 push eBP ; save old frame pointer
 mov eBP,eSP ; get new frame pointer
 sub eSP,localsize ; reserve place for locals
 .
 . ; perform calculations, leave result in AX
 .
 mov eSP,eBP ; free space for locals
 pop eBP ; restore old frame pointer
 ret paramsize ; free parameter space and return

push eAX ; pass some register result
push byte[eBP+20] ; pass some memory variable (FASM/TASM syntax)
push 3 ; pass some constant
call calc ; the returned result is now in eAX

http://en.wikipedia.org/wiki/Calling_convention

http://en.wikipedia.org/wiki/FASM
http://en.wikipedia.org/wiki/TASM
http://en.wikipedia.org/wiki/Calling_convention

From Calling Conventions to Procedures

f(e1)

calc:
 push eBP ; save old frame pointer
 mov eBP,eSP ; get new frame pointer
 sub eSP,localsize ; reserve place for locals
 .
 . ; perform calculations, leave result in AX
 .
 mov eSP,eBP ; free space for locals
 pop eBP ; restore old frame pointer
 ret paramsize ; free parameter space and return

push eAX ; pass some register result
push byte[eBP+20] ; pass some memory variable (FASM/TASM syntax)
push 3 ; pass some constant
call calc ; the returned result is now in eAX

def f(x)={ ... }

http://en.wikipedia.org/wiki/Calling_convention

function definition and call in Scala

http://en.wikipedia.org/wiki/FASM
http://en.wikipedia.org/wiki/TASM
http://en.wikipedia.org/wiki/Calling_convention

From Malloc to Garbage Collection

/* Allocate space for an array with ten elements of type int. */
int *ptr = (int*)malloc(10 * sizeof (int));
if (ptr == NULL) {
 /* Memory could not be allocated, the program
 should handle the error here as appropriate. */
} else {
 /* Allocation succeeded. Do something. */
 free(ptr); /* We are done with the int objects,
 and free the associated pointer. */
 ptr = NULL; /* The pointer must not be used again,
 unless re-assigned to using malloc again. */
}

http://en.wikipedia.org/wiki/Malloc

http://en.wikipedia.org/wiki/Malloc

From Malloc to Garbage Collection

/* Allocate space for an array with ten elements of type int. */
int *ptr = (int*)malloc(10 * sizeof (int));
if (ptr == NULL) {
 /* Memory could not be allocated, the program
 should handle the error here as appropriate. */
} else {
 /* Allocation succeeded. Do something. */
 free(ptr); /* We are done with the int objects,
 and free the associated pointer. */
 ptr = NULL; /* The pointer must not be used again,
 unless re-assigned to using malloc again. */
}

http://en.wikipedia.org/wiki/Malloc

int [] = new int[10];
/* use it; gc will clean up (hopefully) */

http://en.wikipedia.org/wiki/Malloc

Linguistic Abstraction

identify pattern

use new abstraction

language A language B
design abstraction

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

Language Design
- What are adequate linguistic abstractions?

- Coverage: can language express everything in the domain?

‣ often the domain is unbounded; language design is making choice what to cover

- Minimality: but not more

‣ allowing too much interferes with multi-purpose goal

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

Language Design
- What are adequate linguistic abstractions?

- Coverage: can language express everything in the domain?

‣ often the domain is unbounded; language design is making choice what to cover

- Minimality: but not more

‣ allowing too much interferes with multi-purpose goal

Semantics
- What is the semantics of such definitions?

- How can we verify the correctness / consistency of language definitions?

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

Language Design
- What are adequate linguistic abstractions?

- Coverage: can language express everything in the domain?

‣ often the domain is unbounded; language design is making choice what to cover

- Minimality: but not more

‣ allowing too much interferes with multi-purpose goal

Semantics
- What is the semantics of such definitions?

- How can we verify the correctness / consistency of language definitions?

Implementation
- How do we derive efficient language implementations from such definitions?

31

Language Design Methodology

Domain Analysis
- What are the features of the domain?

Language Design
- What are adequate linguistic abstractions?

- Coverage: can language express everything in the domain?

‣ often the domain is unbounded; language design is making choice what to cover

- Minimality: but not more

‣ allowing too much interferes with multi-purpose goal

Semantics
- What is the semantics of such definitions?

- How can we verify the correctness / consistency of language definitions?

Implementation
- How do we derive efficient language implementations from such definitions?

Evaluation
- Apply to new and existing languages to determine adequacy

31

Language Design Methodology

Compiler Automates Work of Programmer

Problem
Domain

Solution
Domain

General-
Purpose

Language

CompilerProgrammer

Compilers for modern high-level languages

- Reduce the gap between problem domain and program

- Support programming in terms of computational

concepts instead of machine concepts

- Abstract from hardware architecture (portability)

- Protect against a range of common programming errors

Domain-Specific
(Meta-) Languages

33

Domains of Computation

Problem
Domain

Solution
Domain

General-
Purpose

Language

Problem
Domain

Solution
Domain

General-
Purpose

Language

“A programming language is low level when its
programs require attention to the irrelevant”

Alan J. Perlis. Epigrams on Programming.
SIGPLAN Notices, 17(9):7-13, 1982.

Solution
Domain

Problem
Domain

Domain-specific language (DSL)
noun
1. a programming language that provides notation, analysis,

verification, and optimization specialized to an application
domain

2. result of linguistic abstraction beyond general-purpose
computation

General-
Purpose

Language

Domain-
Specific

Language

Solution
Domain

Problem
Domain

General-
Purpose

Language

Domain-
Specific

Language

Solution
Domain

Problem
Domain

General-
Purpose

Language

Domain-
Specific

Language

Making programming languages
is probably very expensive?

General-
Purpose

Language

Making programming languages
is probably very expensive?

Solution
Domain

Problem
Domain

General-
Purpose

Language

Domain-
Specific

Language

Language
Design

Compiler +
Editor (IDE)

Compiler +
Editor (IDE)

Meta-Linguistic Abstraction

Language
Design

General-
Purpose

Language

Declarative
Meta

Languages

Solution
Domain

Problem
Domain

General-
Purpose

Language

Domain-
Specific

Language

Language
Design

Applying compiler construction to the domain of compiler construction

Compiler +
Editor (IDE)

Language
Design

General-
Purpose

Language

Declarative
Meta

Languages

Solution
Domain

Problem
Domain

General-
Purpose

Language

Language
Design

That also applies to the definition of (compilers for) general purpose languages

Compiler +
Editor (IDE)

Language
Design

Declarative
Meta

Languages

Language Workbench

Language Design

Syntax
Definition

Static
Semantics

Dynamic
Semantics

Transforms

Meta-DSLs

Compiler +
Editor (IDE)

Spoofax Language Workbench

Language Design

SDF3 Stratego

Consistency
Proof

Statix DynSem

Responsive
Editor (IDE)

TestsIncremental
Compiler

Syntax
Definition

Static
Semantics

Dynamic
Semantics

Transforms

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition
- context-free grammars + disambiguation + constructors + templates

- derivation of parser, formatter, syntax highlighting, …

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition
- context-free grammars + disambiguation + constructors + templates

- derivation of parser, formatter, syntax highlighting, …

Statix: Names & Types
- name resolution with scope graphs

- type checking/inference with constraints

- derivation of name & type resolution algorithm

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition
- context-free grammars + disambiguation + constructors + templates

- derivation of parser, formatter, syntax highlighting, …

Statix: Names & Types
- name resolution with scope graphs

- type checking/inference with constraints

- derivation of name & type resolution algorithm

Stratego: Program Transformation
- term rewrite rules with programmable rewriting strategies

- derivation of program transformation system

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition
- context-free grammars + disambiguation + constructors + templates

- derivation of parser, formatter, syntax highlighting, …

Statix: Names & Types
- name resolution with scope graphs

- type checking/inference with constraints

- derivation of name & type resolution algorithm

Stratego: Program Transformation
- term rewrite rules with programmable rewriting strategies

- derivation of program transformation system

FlowSpec: Data-Flow Analysis
- extraction of control-flow graph and specification of data-flow rules

- derivation of data-flow analysis engine

45

Meta-Languages in Spoofax Language Workbench

SDF3: Syntax definition
- context-free grammars + disambiguation + constructors + templates

- derivation of parser, formatter, syntax highlighting, …

Statix: Names & Types
- name resolution with scope graphs

- type checking/inference with constraints

- derivation of name & type resolution algorithm

Stratego: Program Transformation
- term rewrite rules with programmable rewriting strategies

- derivation of program transformation system

FlowSpec: Data-Flow Analysis
- extraction of control-flow graph and specification of data-flow rules

- derivation of data-flow analysis engine

DynSem: Dynamic Semantics
- specification of operational (natural) semantics

- derivation of interpreter

45

Meta-Languages in Spoofax Language Workbench

46

Spoofax in Action

Education
- Compiler Construction (MiniJava, ChocoPy)

- Language Engineering Project (2020: Ada, C, ChocoPy, FlowSpec)

46

Spoofax in Action

http://conf.researchr.org

Education
- Compiler Construction (MiniJava, ChocoPy)

- Language Engineering Project (2020: Ada, C, ChocoPy, FlowSpec)

Research
- Language Engineering, Language Prototyping

46

Spoofax in Action

http://conf.researchr.org

Education
- Compiler Construction (MiniJava, ChocoPy)

- Language Engineering Project (2020: Ada, C, ChocoPy, FlowSpec)

Research
- Language Engineering, Language Prototyping

Academic Workflow Engineering
- WebDSL (conf.researchr.org, WebLab, MyStudyPlanning, EvaTool)

46

Spoofax in Action

http://conf.researchr.org

Education
- Compiler Construction (MiniJava, ChocoPy)

- Language Engineering Project (2020: Ada, C, ChocoPy, FlowSpec)

Research
- Language Engineering, Language Prototyping

Academic Workflow Engineering
- WebDSL (conf.researchr.org, WebLab, MyStudyPlanning, EvaTool)

Industry
- Oracle Labs: Graph Analytics

- Canon: Several DSLs

- Philips: Software Restructuring

46

Spoofax in Action

http://conf.researchr.org

Language Development with
a Language Workbench

47

Programming Environment (IDE)

Architecture: IDE vs Compiler

Java Type Check JVM
bytecode

Parse CodeGenOptimize

Language Workbench: Live Language Development

ChocoPy: Project
Language

51

ChocoPy: A Typed Restricted Subset of Python 3
Binary-search trees

class TreeNode(object):

 value:int = 0

 left:"TreeNode" = None

 right:"TreeNode" = None

 def insert(self:"TreeNode", x:int) "-> bool:

 if x < self.value:

 if self.left is None:

 self.left = makeNode(x)

 return True

 else:

 return self.left.insert(x)

 elif x > self.value:

 if self.right is None:

 self.right = makeNode(x)

 return True

 else:

 return self.right.insert(x)

 return False

 def contains(self:"TreeNode", x:int) "-> bool:

 if x < self.value:

 if self.left is None:

 return False

 else:

 return self.left.contains(x)

 elif x > self.value:

 if self.right is None:

 return False

 else:

 return self.right.contains(x)

 else:

 return True Source: https://chocopy.org/

https://chocopy.org/

A Compiler and IDE for ChocoPy

ChocoPy IDE with syntax checking, syntax
coloring, type checking (CS4200-A)

Compiler from ChocoPy to RISC-V (CS4200-B)

Executing RISC-V with simulator

ChocoPy: Language Manual and Reference

Start Reading!

Studying Compiler
Construction

55

The Basis

Java Type Check JVM
bytecode

Parse CodeGenOptimize

Specific
- Understanding a specific compiler

- Understanding a programming language (ChocoPy)

- Understanding a target machine (RISC-V)

- Understanding a compilation scheme (ChocoPy to RISC-V)

57

Levels of Understanding Compilers

Specific
- Understanding a specific compiler

- Understanding a programming language (ChocoPy)

- Understanding a target machine (RISC-V)

- Understanding a compilation scheme (ChocoPy to RISC-V)

Architecture
- Understanding architecture of compilers

- Understanding (concepts of) programming languages

- Understanding compilation techniques

57

Levels of Understanding Compilers

Specific
- Understanding a specific compiler

- Understanding a programming language (ChocoPy)

- Understanding a target machine (RISC-V)

- Understanding a compilation scheme (ChocoPy to RISC-V)

Architecture
- Understanding architecture of compilers

- Understanding (concepts of) programming languages

- Understanding compilation techniques

Domains
- Understanding (principles of) syntax definition and parsing

- Understanding (principles of) static semantics and type checking

- Understanding (principles of) dynamic semantics and interpretation/code generation

57

Levels of Understanding Compilers

Specific
- Understanding a specific compiler

- Understanding a programming language (ChocoPy)

- Understanding a target machine (RISC-V)

- Understanding a compilation scheme (ChocoPy to RISC-V)

Architecture
- Understanding architecture of compilers

- Understanding (concepts of) programming languages

- Understanding compilation techniques

Domains
- Understanding (principles of) syntax definition and parsing

- Understanding (principles of) static semantics and type checking

- Understanding (principles of) dynamic semantics and interpretation/code generation

Meta
- Understanding meta-languages and their compilation

57

Levels of Understanding Compilers

Syntax
- concrete syntax, abstract syntax

- context-free grammars

- derivations, ambiguity, disambiguation,

associativity, priority

- parsing, parse trees, abstract syntax trees, terms

- pretty-printing

- parser generation

- syntactic editor services

Transformation
- rewrite rules, rewrite strategies

- simplification, desugaring

58

Course Topics
Statics
• static semantics and type checking

‣ name binding, name resolution, scope graphs

‣ types, type checking, type inference, subtyping

‣ unification, constraints

• semantic editor services

• data-flow analysis

‣ control-flow, data-flow

‣ monotone frameworks, worklist algorithm

Dynamics
• dynamic semantics and interpreters

• operational semantics, program execution

• virtual machines, assembly code, byte code

• code generation

• memory management, garbage collection

CS4200-A: Front-End (5 ECTS)
- Syntax and Type Checking

- Project: Build front-end of compiler for ChocoPy in Spoofax

- Exam in October

CS4200-B: Back-End (5 ECTS)
- Analysis and Code Generation

- Project: Build back-end of compiler for ChocoPy in Spoofax

- Exam in January

59

CS4200: Two Courses

- What is a compiler?

- Syntax Definition

- Disambiguation and Layout-Sensitive Syntax

- Syntactic Editor Services

- Static Semantics & Name Resolution

- Type Checking

- Specification with Statix

- Constraint Resolution

- Parsing

60

Lectures Topics CS4200-A (Tentative)

- What is a compiler?

- Syntax Definition

- Disambiguation and Layout-Sensitive Syntax

- Syntactic Editor Services

- Static Semantics & Name Resolution

- Type Checking

- Specification with Statix

- Constraint Resolution

- Parsing

60

Lectures Topics CS4200-A (Tentative)

Lectures: Thursday, 10:45 11:00

- What is a compiler?

- Syntax Definition

- Disambiguation and Layout-Sensitive Syntax

- Syntactic Editor Services

- Static Semantics & Name Resolution

- Type Checking

- Specification with Statix

- Constraint Resolution

- Parsing

60

Lectures Topics CS4200-A (Tentative)

Lectures: Thursday, 10:45 11:00

Extra Lecture: Friday, Sept 3, 13:45

- What is a compiler?

- Syntax Definition

- Disambiguation and Layout-Sensitive Syntax

- Syntactic Editor Services

- Static Semantics & Name Resolution

- Type Checking

- Specification with Statix

- Constraint Resolution

- Parsing

60

Lectures Topics CS4200-A (Tentative)

Lectures: Thursday, 10:45 11:00

Extra Lecture: Friday, Sept 3, 13:45

Lab: Tuesday, 10:45, 13:45

- Virtual Machines

- Transformation

- Code Generation

- Data-Flow Analysis

- Monotone Frameworks

- Register Allocation

- Memory Management

61

Lecture Topics CS4200-B (Q2) (Tentative)

Brightspace: Announcements

Course Website

https://tudelft-cs4200.github.io/2021

https://tudelft-cs4200.github.io/2021

WebLab for Homework, Exams, Grade Registration

https://weblab.tudelft.nl/cs4200/2021-2022/

Sign in to WebLab using “Single Sign On for TU Delft”

Enroll for Course CS4200 in WebLab

Academic Misconduct

DON’T!

Reading Material

68

ChocoPy: Language Manual and Reference

Start Reading!

The reference manual of the course
project language. The language is a
subset of Python 3.

https://chocopy.org

https://chocopy.org

This award winning paper describes the design of the
Spoofax Language Workbench.

It provides an alternative architecture for
programming languages tooling from the compiler
pipeline discussed in this lecture.

Read the paper and make the homework assignments on
WebLab.

Note that the details of some of the technologies in
Spoofax have changed since the publication.

https://doi.org/10.1145/1932682.1869497

This paper gives an overview of the Syntax
Definition Formalism SDF3, the language for syntax
definition in Spoofax and in this course.

It provides a summary of research on syntax
definition that we did in the last 20 years and
provides a good introduction to the features of SDF3
that we will study in the next couple of weeks.

https://doi.org/10.1007/978-3-030-58768-0_1

Next: Declarative Syntax
Definition

Friday, Sept 3 at 13:45!

72

