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Types 
- kinds of types

- relations between types


Formalizing Type Systems 
- judgments and inference rules


Testing Static Analysis 
- in SPT


Statix 
- Predicates and type constraints
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Why types?
- "guarantee absence of run-time type errors"

What is a type system?
- A type system is a tractable syntactic method for proving the absence 

of certain program behaviors by classifying phrases according to the 
kinds of values they compute. [Pierce2002]

Discuss using a series of examples
- Do you consider the example correct or not, and why?
‣ That is, do you think it should type-check?

- If incorrect: what types will disallow this program?
- If correct: what types will allow this program?

Why types?
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4 / "four"

4      : number

"four" : string

/      : number * number → number

typing prevents undefined runtime behavior

simple types
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Types Example

7 + (if (true) { 5 } else { "four" }) 

7 : number

5 : number

- typing (over)approximates runtime behavior
- programs without runtime errors can be rejected

"four" : string

if     : ?

no simple type
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Types Example

function id(x) { return x; }

id(4); id(true);

4     : number

true  : boolean

id    : ∀T.T→T

- richer types approximate behavior better
- depends on runtime representation of values
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Types Example

if (a < 5) { 5 } else { "four" } 

- richer types approximate behavior better
- depends on runtime representation of values

5      : number

"four" : string

if     : number|string
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Types Example

float distance = 12.0, time = 4.0

float velocity = time / distance

distance : float<m>

time     : float<s>

velocity : float<m/s>

- no runtime problems, but not correct (v = d / t)
- types can enforce other correctness properties

unit-o
f-meas

ure ty
pe
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- Simple	 int, float→float, bool

- Named	 class A, newtype Id

- Polymorphic	 List<X>, ∀a.a→a
- Union/sum (one of)	 string|string[]

- Unit-of-measure	 float<m>, float<m/s>

- Structural	 { x: number, y: number }

- Intersection (all of)	 Comparable&Serializable

- Recursive	 μT.int|T*T (binary int tree)
- Ownership	 &mut data

- Dependent – values in types	Vector 3
- ... many more ...

What kind of types?
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Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]
‣ Also logical properties beyond runtime problems

What are types?
- Static classification of expressions by approximating the runtime values they 

may produce
- Richer types approximate runtime behavior better
- Richer types may encode correctness properties beyond runtime crashes

What is the difference between typing and testing?
- Typing is an over-approximation of runtime behavior (proof of absence)
- Testing is an under-approximation of runtime behavior (proof of presence)

Why types?
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Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation
‣ As long as the public interface is implemented, dependent modules do not change

Can we have our cake and eat it too?
- Ever more precise types lead to ever more correct programs
- What would be the most precise type you can give?
‣ The exact set of values computed for a given input?

- Expressive typing problems become hard to compute
- Many are undecidable, if they imply solving the halting problem
- Designing type systems always involves trade-offs

Types and language design
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Comparing Types

interface Point2D { x: number, y: number }

interface Point3D { x: number, y: number, z: number }

var p1: Point3D = { x: 5, y: -11, z: 0 }

var p2: Point2D = p1

Is this program correct?
- No, if equal types are required
- Yes, if structural subtypes are allowed
- When is T a subtype of U?

‣ When a value of type T can be used when a value of U is expected
- What about nominal subtypes?

‣ interface Point3D extends Point2D
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Combination Example: Generics and Subtyping

class A {}

class B extends A {} 


B[] bs = new B[1];

A[] as = bs;

as[0]  = new A();

B b    = bs[0];

subtyping on arrays &
mutable updates is unsound

- unsound = under-approximation of runtime behavior
- feature combinations are not trivial
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Comparing Types

int i = 12 
float f = i

Is this program correct?
- No, floats and integers have different runtime representations
- Yes, possible by coercion

‣ Coercion requires insertion of code to convert between representations
- How is this different than subtyping?

‣ Subtyping says that the use of the unchanged value is safe



Type Relations

What kind of relations between types? 
- Equality T=T – syntactic or structural 
- Subtyping T<:T – nominal or structural 
- Coercion – requires code insertion



Why Type Checking?
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Dynamically Typed vs Statically Typed 
- Dynamic: type checking at run-time

- Static: type checking at compile-time (before run-time)


What does it mean to type check?  
- Type safety: guarantee absence of run-time type errors


Why static type checking? 
- Avoid overhead of run-time type checking

- Fail faster: find (type) errors at compile time

- Find all (type) errors: some errors may not be triggered by testing

- But: not all errors can be found statically (e.g. array bounds checking)

Why Type Checking? Some Discussion Points



Formalizing 
Type Systems
(in the ChocoPy reference manual)
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Formalizing Type Systems: Judgements and Inference Rules

hypotheses/premises

judgement

if the hypotheses/premises are true then 
the judgment below the bar is true

proposition (e : T): expression e has type T

judgement: context %|- proposition
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Intermezzo: Testing 
Static Analysis
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Testing Name Resolution

test inner name [[
   let type t = u
       type u = int
       var x: u := 0
   in 
      x := 42 ;
      let type [[u]] = t
          var y: [[u]] := 0
      in
         y := 42
      end
end
]] resolve #2 to #1

test outer name [[
   let type t = u
       type [[u]] = int
       var x: [[u]] := 0
   in 
      x := 42 ;
      let type u = t
          var y: u := 0
      in
         y := 42
      end
end
]] resolve #2 to #1



Testing Type Checking

test variable reference [[
   let type t = u
       type u = int
       var x: u := 0
   in 
      x := 42 ;
      let type u = t
          var y: u := 0
      in
         y := [[x]]
      end
end
]] run get-type to INT()

test integer constant [[
   let type t = u
       type u = int
       var x: u := 0
   in 
      x := 42 ;
      let type u = t
          var y: u := 0
      in
         y := [[42]]
      end
end
]] run get-type to INT()



Testing Errors

test undefined variable [[
   let type t = u
       type u = int
       var x: u := 0
   in 
      x := 42 ;
      let type u = t
          var y: u := 0
      in
         y := [[z]]
      end
end
]] 1 error

test type error [[
   let type t = u
       type u = string
       var x: u := 0
   in 
      x := 42 ;
      let type u = t
          var y: u := 0
      in
         y := [[x]]
      end
end
]] 1 error



Test Corner Cases

context-free superset

language



Type Checking using 
High-level Typing Rules
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Source 
Code 
Editor

Parse
Abstract 
Syntax 
Tree

Type Check

Check that names are used correctly and that expressions are well-typed

Errors
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Source 
Code 
Editor

Abstract 
Syntax 
Tree

Errors
Type 

Specification
Solve

language specific language
independent

Parse +
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Separation of concerns
- Language specific specification in terms of logical formalism
- Language independent algorithm to interpret specification
- Write specification, get an executable checker

Advantages
- High-level, declarative specification
- Abstract over algorithmic concerns
‣ Execution order
‣ Transparently support for inference

- Logical variables act as interface between different kinds of 
premises

Type Checking with Specifications
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What is Statix? 
- Domain-specific specification language…

- … to write typing and name binding specification

- Comes with a solver to use for type checking

What features does it support? 
- Predicates defined by logical (Horn-clause) rules

- Rich binding structures using scope graphs

- Unification based inference

Limitations 
- Restricted to the domain-specific (= restricted) model

‣ Not all name binding patterns in the wild can be expressed


- Hypothesis is that all sensible patterns are expressible

Statix



Constraint-based language with declarative semantics 
- Understand type system without algorithmic reasoning


Name binding using scope graphs  
- as part of constraint resolution


Implementation 
- Solver interprets specification as type checker

- Sound wrt declarative semantics

- Scheduling of constraint resolution based on language independent 

principles

Type System Specification in Statix
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Example Project: statix-sandbox/chicago



Concrete and 
Abstract Syntax



module signatures/arithmetic-sig


imports signatures/base-sig


signature

  constructors

    Int : INT %-> Exp

    Min : Exp %-> Exp

    Add : Exp * Exp %-> Exp

    Sub : Exp * Exp %-> Exp

    Mul : Exp * Exp %-> Exp

    IntT : Type

From Concrete Syntax Definition to Abstract Syntax Signature

module base


imports lex


lexical sorts ID INT STRING 

sorts Exp Type Val Decl Bind TYPE

context-free syntax

  Exp = <(<Exp>)> {bracket}

  Type = <(<Type>)> {bracket}

module signatures/base-sig


imports signatures/lex-sig


signature

  sorts

    ID = string

    INT = string

    STRING = string

    Exp Type Val Decl Bind TYPE

module arithmetic


imports base


context-free syntax

  Exp.Int   = %<<INT%>>

  Exp.Min   = [-[Exp]]

  Exp.Add   = %<<Exp> + <Exp%>> {left}

  Exp.Sub   = %<<Exp> - <Exp%>> {left}

  Exp.Mul   = %<<Exp> * <Exp%>> {left}

  Type.IntT = <Int>


context-free priorities

  Exp.Mul > {left: Exp.Add Exp.Sub}



From Concrete Syntax Definition to Abstract Syntax Signature

1 + 2 * 3

Add(

  Int("1"), 

  Mul(

    Int(“2"),

    Int(“3")))

module arithmetic


imports base 


context-free syntax

  Exp.Int   = %<<INT%>>

  Exp.Min   = [-[Exp]]

  Exp.Add   = %<<Exp> + <Exp%>> {left}

  Exp.Sub   = %<<Exp> - <Exp%>> {left}

  Exp.Mul   = %<<Exp> * <Exp%>> {left}

  Type.IntT = <Int>


context-free priorities

  Exp.Mul > {left: Exp.Add Exp.Sub}

module signatures/arithmetic-sig


imports signatures/base-sig


signature

  constructors

    Int : INT %-> Exp

    Min : Exp %-> Exp

    Add : Exp * Exp %-> Exp

    Sub : Exp * Exp %-> Exp

    Mul : Exp * Exp %-> Exp

    IntT : Type

1 + 2 * 3

From here we will use concrete syntax 
examples and abstract syntax rules



Predicates



Predicates Represent Program Properties

module lang/base/statics


imports signatures/lang/base/syntax-sig

    

rules "// type of ""...


  typeOfType : scope * Type %-> TYPE

  typeOfExp  : scope * Exp  %-> TYPE

 

rules "// well-typedness of ""...


  declOk : scope * Decl 

  declsOk maps declOk(*, list(*))


  bindOk : scope * scope * Bind  

  bindsOk maps bindOk(*, *, list(*))

Statix is a pure logic programming language

Use maps to apply a predicate to 
all elements of a list



Predicates Represent Program Properties

module lang/base/statics


imports signatures/lang/base/syntax-sig

    

rules "// type of ""...


  typeOfType : scope * Type %-> TYPE
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Predicates Represent Program Properties

module lang/base/statics


imports signatures/lang/base/syntax-sig

    

rules "// type of ""...


  typeOfType : scope * Type %-> TYPE

  typeOfExp  : scope * Exp  %-> TYPE

 

rules "// well-typedness of ""...


  declOk : scope * Decl 

  declsOk maps declOk(*, list(*))


  bindOk : scope * scope * Bind  

  bindsOk maps bindOk(*, *, list(*))
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the property represented by the predicate

typeOfExp(s, e) %== T 

expression e has type T in scope s

Use maps to apply a predicate to 
all elements of a list
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Predicates Represent Program Properties

module lang/base/statics


imports signatures/lang/base/syntax-sig

    

rules "// type of ""...


  typeOfType : scope * Type %-> TYPE

  typeOfExp  : scope * Exp  %-> TYPE

 

rules "// well-typedness of ""...


  declOk : scope * Decl 

  declsOk maps declOk(*, list(*))


  bindOk : scope * scope * Bind  

  bindsOk maps bindOk(*, *, list(*))

Statix is a pure logic programming language

A Statix specification defines predicates

If a predicate holds for some term, the term has 
the property represented by the predicate

typeOfExp(s, e) %== T 

expression e has type T in scope s

declOk(s, d)

declaration d is well-defined (Ok) in scope s

Use maps to apply a predicate to 
all elements of a list

typeOfType(s, t) %== T 

syntactic type t has semantic type T in scope s



Functional Notation vs Predicate Notation

rules


  typeOfType : scope * Type %-> TYPE

  typeOfExp  : scope * Exp  %-> TYPE
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  typeOfExp  : scope * Exp  * TYPE
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rules


  typeOfType : scope * Type * TYPE

  typeOfExp  : scope * Exp  * TYPE

typeOfExp(s, e) %== T 

expression e has type T in scope s

typeOfExp(s, e, T) 

expression e has type T in scope s



Functional Notation vs Predicate Notation

rules
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rules
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  typeOfExp  : scope * Exp  * TYPE

typeOfExp(s, e) %== T 

expression e has type T in scope s

typeOfExp(s, e, T) 

expression e has type T in scope s

One expression has one type
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Functional Notation vs Predicate Notation

rules


  typeOfType : scope * Type %-> TYPE

  typeOfExp  : scope * Exp  %-> TYPE

rules


  typeOfType : scope * Type * TYPE

  typeOfExp  : scope * Exp  * TYPE

typeOfExp(s, e) %== T 

expression e has type T in scope s

typeOfExp(s, e, T) 

expression e has type T in scope s

One expression has one type One expression can have 

multiple types

(Solver does not match on type argument)



Predicates are Defined by Rules

typeOfExp : scope * Exp %-> TYPE     



Predicates are Defined by Rules

typeOfExp : scope * Exp %-> TYPE     Predicate



Predicates are Defined by Rules

typeOfExp(s, Add(e1, e2)) = INT() :-

  typeOfExp(s, e1) %== INT(),

  typeOfExp(s, e2) %== INT().   

typeOfExp : scope * Exp %-> TYPE     Predicate

Rule
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Predicates are Defined by Rules

typeOfExp(s, Add(e1, e2)) = INT() :-

  typeOfExp(s, e1) %== INT(),

  typeOfExp(s, e2) %== INT().   

typeOfExp : scope * Exp %-> TYPE     Predicate

Rule Head

Premises

If the premises are true, the head is true

For all s, e1, e2



Declarative Reading vs Operational Reading

typeOfExp(s, Add(e1, e2)) = INT() :-

  typeOfExp(s, e1) %== INT(),

  typeOfExp(s, e2) %== INT()   

typeOfExp : scope * Exp %-> TYPE     Predicate

Rule Head

Premises
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Declarative Reading vs Operational Reading

Declarative Names Operational Names

The type of expression e is T Type checking expression e produces type T

typeCheck(e) = TtypeOfExp(e) %== T

Type system defines a (functional) relation Type checking is a process

typeOfExp(s, Add(e1, e2)) = INT() :-

  typeOfExp(s, e1) %== INT(),

  typeOfExp(s, e2) %== INT()   

typeOfExp : scope * Exp %-> TYPE     Predicate

Rule Head

Premises



Syntax-Directed Definitions: One Rule per Language Construct

module signatures/arithmetic-sig


imports signatures/base-sig


signature

  constructors

    Int : INT %-> Exp

    Min : Exp %-> Exp

    Add : Exp * Exp %-> Exp

    Sub : Exp * Exp %-> Exp

    Mul : Exp * Exp %-> Exp

    IntT : Type

module statics/arithmetic


imports statics/base

imports signatures/arithmetic-sig


signature

  constructors

    INT : TYPE

    

rules

  typeOfType(s, IntT()) = INT(). 


rules

  typeOfExp(s, Int(i)) = INT().

  

  typeOfExp(s, Min(e)) = INT() :-

    typeOfExp(s, e) %== INT().

    

  typeOfExp(s, Add(e1, e2)) = INT() :-

    typeOfExp(s, e1) %== INT(),

    typeOfExp(s, e2) %== INT().

    

  typeOfExp(s, Sub(e1, e2)) = INT() :-

    typeOfExp(s, e1) %== INT(),

    typeOfExp(s, e2) %== INT().

    

  typeOfExp(s, Mul(e1, e2)) = INT() :-

    typeOfExp(s, e1) %== INT(),

    typeOfExp(s, e2) %== INT().

module statix/base


imports signatures/base-sig

    

rules


  typeOfType : scope * Type %-> TYPE

  typeOfExp  : scope * Exp  %-> TYPE



From Now: No Module Headers

signature

  constructors

    Int : INT %-> Exp

    Min : Exp %-> Exp

    Add : Exp * Exp %-> Exp

    Sub : Exp * Exp %-> Exp

    Mul : Exp * Exp %-> Exp

    IntT : Type

signature

  constructors

    INT : TYPE

    

rules

  typeOfType(s, IntT()) = INT(). 


rules

  typeOfExp(s, Int(i)) = INT().

  

  typeOfExp(s, Min(e)) = INT() :-

    typeOfExp(s, e) %== INT().

    

  typeOfExp(s, Add(e1, e2)) = INT() :-

    typeOfExp(s, e1) %== INT(),

    typeOfExp(s, e2) %== INT().

    

  typeOfExp(s, Sub(e1, e2)) = INT() :-

    typeOfExp(s, e1) %== INT(),

    typeOfExp(s, e2) %== INT().

    

  typeOfExp(s, Mul(e1, e2)) = INT() :-

    typeOfExp(s, e1) %== INT(),

    typeOfExp(s, e2) %== INT().

rules


  typeOfType : scope * Type %-> TYPE

  typeOfExp  : scope * Exp  %-> TYPE



Types Are Just Terms

signature

  constructors

    BoolT    : Type

    BOOL     : TYPE

    True     : Exp

    False    : Exp

    Not      : Exp %-> Exp

    And      : Exp * Exp %-> Exp

    Or       : Exp * Exp %-> Exp

    If       : Exp * Exp * Exp %-> Exp

    Eq       : Exp * Exp %-> Exp

rules

  

  typeOfType(s, BoolT()) = BOOL().


rules 

  

  typeOfExp(s, True()) = BOOL().

  

  typeOfExp(s, False()) = BOOL().

  

  typeOfExp(s, And(e1, e2)) = BOOL() :-

    typeOfExp(s, e1) %== BOOL(),

    typeOfExp(s, e2) %== BOOL().

  

  typeOfExp(s, If(e1, e2, e3)) = lub(T1, T2) :-

    typeOfExp(s, e1) %== BOOL(),

    typeOfExp(s, e2) %== T1,

    typeOfExp(s, e3) %== T2,

    equitype(T1, T2).

     

  typeOfExp(s, Eq(e1, e2)) = BOOL() :- {T1 T2}

    typeOfExp(s, e1) %== T1,

    typeOfExp(s, e2) %== T2,

    equitype(T1, T2).

rules "// operations on types


  subtype  : Exp * TYPE * TYPE

  equitype : TYPE * TYPE 

  lub      : TYPE * TYPE %-> TYPE

  

  subtype(_, T, T).

  equitype(T, T).

  lub(T, T) = T.



From Declarative Definition to Type Checker



From Declarative Definition to Type Checker

Parser
Syntax 

Definition in 
SDF3



From Declarative Definition to Type Checker

Parser

AST

Syntax 
Definition in 

SDF3

Parse 

Errors

Syntax

Highlighting



From Declarative Definition to Type Checker

Parser

Solver

AST

Syntax 
Definition in 

SDF3

Type System 
in Statix

Signature in 
Statix

Parse 

Errors

Syntax

Highlighting



From Declarative Definition to Type Checker

Parser

Solver

AST

Syntax 
Definition in 

SDF3

Type System 
in Statix

Signature in 
Statix

Parse 

Errors

Syntax

Highlighting

Type

Errors



Statix in Spoofax



Programs with 
Names



Programs with Names

module Names {


  module Even {

    import Odd

    def even = fun(x) {            

         if x %== 0 then true else odd(x - 1)

        }

  }

  

  module Odd {

    import Even

    def odd = fun(x) {

          if x %== 0 then false else even(x - 1)

        }

  }


  module Compute {

    type Result = { input : Int, output : Bool }

    def compute = fun(x) { 

           Result{ input = x, output = Odd@odd x }

        }

  }

  

}
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Programs with Names

module Names {
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Programs with Names

module Names {


  module Even {

    import Odd

    def even = fun(x) {            

         if x %== 0 then true else odd(x - 1)

        }

  }

  

  module Odd {

    import Even

    def odd = fun(x) {
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  module Compute {

    type Result = { input : Int, output : Bool }

    def compute = fun(x) { 

           Result{ input = x, output = Odd@odd x }

        }

  }

  

}

Name binding key in programming 
languages

Many name binding patterns

Name resolution complicates 

type checkers, compilers

Ad hoc non-declarative treatment

A systematic, uniform approach to 
name resolution?

Deal with erroneous programs



Name Resolution with Scope Graphs

let function fact(n : int) : int = 
      if n < 1 then 
        1 
      else 
        n * fact(n - 1)
 in 
    fact(10)
end

Program
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Name Resolution with Scope Graphs
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Name Resolution with Scope Graphs in Statix

Declarations and References

Lexical Scope

Records

Modules

Scheduling Resolution

Permission to Extend
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Next: Name Binding 
and Name Resolution
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