
Type Checking and Type Constraints

CS4200 | Compiler Construction | September 16, 2021

Eelco Visser

Types
- kinds of types

- relations between types

Formalizing Type Systems
- judgments and inference rules

Testing Static Analysis
- in SPT

Statix
- Predicates and type constraints

This Lecture

Types

3

Why types?

Why types?

Why types?

Why types?
- "guarantee absence of run-time type errors"

Why types?

Why types?
- "guarantee absence of run-time type errors"

What is a type system?

Why types?

Why types?
- "guarantee absence of run-time type errors"

What is a type system?
- A type system is a tractable syntactic method for proving the absence

of certain program behaviors by classifying phrases according to the
kinds of values they compute. [Pierce2002]

Why types?

Why types?
- "guarantee absence of run-time type errors"

What is a type system?
- A type system is a tractable syntactic method for proving the absence

of certain program behaviors by classifying phrases according to the
kinds of values they compute. [Pierce2002]

Discuss using a series of examples
- Do you consider the example correct or not, and why?
‣ That is, do you think it should type-check?

- If incorrect: what types will disallow this program?
- If correct: what types will allow this program?

Why types?

Preliminaries

class A {

 B b;

 int m(int i) {

 return i + b.f;

 }

}

class B {

 int f;

}

How do types show up in programs?

Preliminaries

class A {

 B b;

 int m(int i) {

 return i + b.f;

 }

}

class B {

 int f;

}

How do types show up in programs?
- Type literals describe types

Preliminaries

class A {

 B b;

 int m(int i) {

 return i + b.f;

 }

}

class B {

 int f;

}

How do types show up in programs?
- Type literals describe types
- Type definitions introduce new (named)

types

Preliminaries

class A {

 B b;

 int m(int i) {

 return i + b.f;

 }

}

class B {

 int f;

}

How do types show up in programs?
- Type literals describe types
- Type definitions introduce new (named)

types
- Type references refer to named types

Preliminaries

class A {

 B b;

 int m(int i) {

 return i + b.f;

 }

}

class B {

 int f;

}

How do types show up in programs?
- Type literals describe types
- Type definitions introduce new (named)

types
- Type references refer to named types
- Declared variables have types (x : T)

Preliminaries

class A {

 B b;

 int m(int i) {

 return i + b.f;

 }

}

class B {

 int f;

}

How do types show up in programs?
- Type literals describe types
- Type definitions introduce new (named)

types
- Type references refer to named types
- Declared variables have types (x : T)
- Expressions have types (e : T)

Preliminaries

class A {

 B b;

 int m(int i) {

 return i + b.f;

 }

}

class B {

 int f;

}

How do types show up in programs?
- Type literals describe types
- Type definitions introduce new (named)

types
- Type references refer to named types
- Declared variables have types (x : T)
- Expressions have types (e : T)
‣ Including all sub-expressions

Preliminaries

class A {

 B b;

 int m(int i) {

 return i + b.f;

 }

}

class B {

 int f;

}

How do types show up in programs?
- Type literals describe types
- Type definitions introduce new (named)

types
- Type references refer to named types
- Declared variables have types (x : T)
- Expressions have types (e : T)
‣ Including all sub-expressions

Types Example

4 / "four"

Types Example

4 / "four"

4 : number

"four" : string

/ : number * number → number

Types Example

4 / "four"

4 : number

"four" : string

/ : number * number → number

simple types

Types Example

4 / "four"

4 : number

"four" : string

/ : number * number → number

typing prevents undefined runtime behavior

simple types

Types Example

7 + (if (true) { 5 } else { "four" })

Types Example

7 + (if (true) { 5 } else { "four" })

7 : number

5 : number

"four" : string

if : ?

Types Example

7 + (if (true) { 5 } else { "four" })

7 : number

5 : number

"four" : string

if : ?

no simple type

Types Example

7 + (if (true) { 5 } else { "four" })

7 : number

5 : number

- typing (over)approximates runtime behavior
- programs without runtime errors can be rejected

"four" : string

if : ?

no simple type

Types Example

function id(x) { return x; }

id(4); id(true);

Types Example

function id(x) { return x; }

id(4); id(true);

4 : number

true : boolean

id : ∀T.T→T

polymorphic type

Types Example

function id(x) { return x; }

id(4); id(true);

4 : number

true : boolean

id : ∀T.T→T

polymorphic type

Types Example

function id(x) { return x; }

id(4); id(true);

4 : number

true : boolean

id : ∀T.T→T

- richer types approximate behavior better
- depends on runtime representation of values

Types Example

if (a < 5) { 5 } else { "four" }

Types Example

if (a < 5) { 5 } else { "four" }

5 : number

"four" : string

if : number|string

union type

Types Example

if (a < 5) { 5 } else { "four" }

5 : number

"four" : string

if : number|string

union type

Types Example

if (a < 5) { 5 } else { "four" }

- richer types approximate behavior better
- depends on runtime representation of values

5 : number

"four" : string

if : number|string

Types Example

float distance = 12.0, time = 4.0

float velocity = time / distance

Types Example

float distance = 12.0, time = 4.0

float velocity = time / distance

distance : float<m>

time : float<s>

velocity : float<m/s>

Types Example

float distance = 12.0, time = 4.0

float velocity = time / distance

distance : float<m>

time : float<s>

velocity : float<m/s>

unit-o
f-meas

ure ty
pe

Types Example

float distance = 12.0, time = 4.0

float velocity = time / distance

distance : float<m>

time : float<s>

velocity : float<m/s>

- no runtime problems, but not correct (v = d / t)
- types can enforce other correctness properties

unit-o
f-meas

ure ty
pe

What kind of types?

- Simple	 int, float→float, bool

- Named	 class A, newtype Id

- Polymorphic	 List<X>, ∀a.a→a
- Union/sum (one of)	 string|string[]

- Unit-of-measure	 float<m>, float<m/s>

What kind of types?

- Simple	 int, float→float, bool

- Named	 class A, newtype Id

- Polymorphic	 List<X>, ∀a.a→a
- Union/sum (one of)	 string|string[]

- Unit-of-measure	 float<m>, float<m/s>

- Structural	 { x: number, y: number }

What kind of types?

- Simple	 int, float→float, bool

- Named	 class A, newtype Id

- Polymorphic	 List<X>, ∀a.a→a
- Union/sum (one of)	 string|string[]

- Unit-of-measure	 float<m>, float<m/s>

- Structural	 { x: number, y: number }

- Intersection (all of)	 Comparable&Serializable

What kind of types?

- Simple	 int, float→float, bool

- Named	 class A, newtype Id

- Polymorphic	 List<X>, ∀a.a→a
- Union/sum (one of)	 string|string[]

- Unit-of-measure	 float<m>, float<m/s>

- Structural	 { x: number, y: number }

- Intersection (all of)	 Comparable&Serializable

- Recursive	 μT.int|T*T (binary int tree)

What kind of types?

- Simple	 int, float→float, bool

- Named	 class A, newtype Id

- Polymorphic	 List<X>, ∀a.a→a
- Union/sum (one of)	 string|string[]

- Unit-of-measure	 float<m>, float<m/s>

- Structural	 { x: number, y: number }

- Intersection (all of)	 Comparable&Serializable

- Recursive	 μT.int|T*T (binary int tree)
- Ownership	 &mut data

What kind of types?

- Simple	 int, float→float, bool

- Named	 class A, newtype Id

- Polymorphic	 List<X>, ∀a.a→a
- Union/sum (one of)	 string|string[]

- Unit-of-measure	 float<m>, float<m/s>

- Structural	 { x: number, y: number }

- Intersection (all of)	 Comparable&Serializable

- Recursive	 μT.int|T*T (binary int tree)
- Ownership	 &mut data

- Dependent – values in types	Vector 3

What kind of types?

- Simple	 int, float→float, bool

- Named	 class A, newtype Id

- Polymorphic	 List<X>, ∀a.a→a
- Union/sum (one of)	 string|string[]

- Unit-of-measure	 float<m>, float<m/s>

- Structural	 { x: number, y: number }

- Intersection (all of)	 Comparable&Serializable

- Recursive	 μT.int|T*T (binary int tree)
- Ownership	 &mut data

- Dependent – values in types	Vector 3
- ... many more ...

What kind of types?

Why types?

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]
‣ Also logical properties beyond runtime problems

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]
‣ Also logical properties beyond runtime problems

What are types?

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]
‣ Also logical properties beyond runtime problems

What are types?
- Static classification of expressions by approximating the runtime values they

may produce

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]
‣ Also logical properties beyond runtime problems

What are types?
- Static classification of expressions by approximating the runtime values they

may produce
- Richer types approximate runtime behavior better

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]
‣ Also logical properties beyond runtime problems

What are types?
- Static classification of expressions by approximating the runtime values they

may produce
- Richer types approximate runtime behavior better
- Richer types may encode correctness properties beyond runtime crashes

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]
‣ Also logical properties beyond runtime problems

What are types?
- Static classification of expressions by approximating the runtime values they

may produce
- Richer types approximate runtime behavior better
- Richer types may encode correctness properties beyond runtime crashes

What is the difference between typing and testing?

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]
‣ Also logical properties beyond runtime problems

What are types?
- Static classification of expressions by approximating the runtime values they

may produce
- Richer types approximate runtime behavior better
- Richer types may encode correctness properties beyond runtime crashes

What is the difference between typing and testing?
- Typing is an over-approximation of runtime behavior (proof of absence)

Why types?

Why types?
- Statically prove the absence of certain (wrong) runtime behavior
‣ “Well-typed programs cannot go wrong.” [Reynolds1985]
‣ Also logical properties beyond runtime problems

What are types?
- Static classification of expressions by approximating the runtime values they

may produce
- Richer types approximate runtime behavior better
- Richer types may encode correctness properties beyond runtime crashes

What is the difference between typing and testing?
- Typing is an over-approximation of runtime behavior (proof of absence)
- Testing is an under-approximation of runtime behavior (proof of presence)

Why types?

Types influence language design

Types and language design

Types influence language design
- Types abstract over implementation

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation
‣ As long as the public interface is implemented, dependent modules do not change

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation
‣ As long as the public interface is implemented, dependent modules do not change

Can we have our cake and eat it too?

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation
‣ As long as the public interface is implemented, dependent modules do not change

Can we have our cake and eat it too?
- Ever more precise types lead to ever more correct programs

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation
‣ As long as the public interface is implemented, dependent modules do not change

Can we have our cake and eat it too?
- Ever more precise types lead to ever more correct programs
- What would be the most precise type you can give?

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation
‣ As long as the public interface is implemented, dependent modules do not change

Can we have our cake and eat it too?
- Ever more precise types lead to ever more correct programs
- What would be the most precise type you can give?
‣ The exact set of values computed for a given input?

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation
‣ As long as the public interface is implemented, dependent modules do not change

Can we have our cake and eat it too?
- Ever more precise types lead to ever more correct programs
- What would be the most precise type you can give?
‣ The exact set of values computed for a given input?

- Expressive typing problems become hard to compute

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation
‣ As long as the public interface is implemented, dependent modules do not change

Can we have our cake and eat it too?
- Ever more precise types lead to ever more correct programs
- What would be the most precise type you can give?
‣ The exact set of values computed for a given input?

- Expressive typing problems become hard to compute
- Many are undecidable, if they imply solving the halting problem

Types and language design

Types influence language design
- Types abstract over implementation
‣ Any value with the correct type is accepted

- Types enable separate or incremental compilation
‣ As long as the public interface is implemented, dependent modules do not change

Can we have our cake and eat it too?
- Ever more precise types lead to ever more correct programs
- What would be the most precise type you can give?
‣ The exact set of values computed for a given input?

- Expressive typing problems become hard to compute
- Many are undecidable, if they imply solving the halting problem
- Designing type systems always involves trade-offs

Types and language design

Relations between
Types

14

Comparing Types

Comparing Types

interface Point2D { x: number, y: number }

interface Vector2D { x: number, y: number }

var p1: Point2D = { x: 5, y: -11 }

var p2: Vector2D = p1

Comparing Types

interface Point2D { x: number, y: number }

interface Vector2D { x: number, y: number }

var p1: Point2D = { x: 5, y: -11 }

var p2: Vector2D = p1

Is this program correct?

Comparing Types

interface Point2D { x: number, y: number }

interface Vector2D { x: number, y: number }

var p1: Point2D = { x: 5, y: -11 }

var p2: Vector2D = p1

Is this program correct?
- No, if types are compared by name

Comparing Types

interface Point2D { x: number, y: number }

interface Vector2D { x: number, y: number }

var p1: Point2D = { x: 5, y: -11 }

var p2: Vector2D = p1

Is this program correct?
- No, if types are compared by name
- Yes, if types are compared based on structure

Comparing Types

Comparing Types

interface Point2D { x: number, y: number }

interface Point3D { x: number, y: number, z: number }

var p1: Point3D = { x: 5, y: -11, z: 0 }

var p2: Point2D = p1

Comparing Types

interface Point2D { x: number, y: number }

interface Point3D { x: number, y: number, z: number }

var p1: Point3D = { x: 5, y: -11, z: 0 }

var p2: Point2D = p1

Is this program correct?

Comparing Types

interface Point2D { x: number, y: number }

interface Point3D { x: number, y: number, z: number }

var p1: Point3D = { x: 5, y: -11, z: 0 }

var p2: Point2D = p1

Is this program correct?
- No, if equal types are required

Comparing Types

interface Point2D { x: number, y: number }

interface Point3D { x: number, y: number, z: number }

var p1: Point3D = { x: 5, y: -11, z: 0 }

var p2: Point2D = p1

Is this program correct?
- No, if equal types are required
- Yes, if structural subtypes are allowed

Comparing Types

interface Point2D { x: number, y: number }

interface Point3D { x: number, y: number, z: number }

var p1: Point3D = { x: 5, y: -11, z: 0 }

var p2: Point2D = p1

Is this program correct?
- No, if equal types are required
- Yes, if structural subtypes are allowed
- When is T a subtype of U?

Comparing Types

interface Point2D { x: number, y: number }

interface Point3D { x: number, y: number, z: number }

var p1: Point3D = { x: 5, y: -11, z: 0 }

var p2: Point2D = p1

Is this program correct?
- No, if equal types are required
- Yes, if structural subtypes are allowed
- When is T a subtype of U?

‣ When a value of type T can be used when a value of U is expected

Comparing Types

interface Point2D { x: number, y: number }

interface Point3D { x: number, y: number, z: number }

var p1: Point3D = { x: 5, y: -11, z: 0 }

var p2: Point2D = p1

Is this program correct?
- No, if equal types are required
- Yes, if structural subtypes are allowed
- When is T a subtype of U?

‣ When a value of type T can be used when a value of U is expected
- What about nominal subtypes?

Comparing Types

interface Point2D { x: number, y: number }

interface Point3D { x: number, y: number, z: number }

var p1: Point3D = { x: 5, y: -11, z: 0 }

var p2: Point2D = p1

Is this program correct?
- No, if equal types are required
- Yes, if structural subtypes are allowed
- When is T a subtype of U?

‣ When a value of type T can be used when a value of U is expected
- What about nominal subtypes?

‣ interface Point3D extends Point2D

Combination Example: Generics and Subtyping

class A {}

class B extends A {}

B[] bs = new B[1];

A[] as = bs;

as[0] = new A();

B b = bs[0];

Combination Example: Generics and Subtyping

class A {}

class B extends A {}

B[] bs = new B[1];

A[] as = bs;

as[0] = new A();

B b = bs[0];

subtyping on arrays &
mutable updates is unsound

- unsound = under-approximation of runtime behavior
- feature combinations are not trivial

Comparing Types

Comparing Types

int i = 12
float f = i

Comparing Types

int i = 12
float f = i

Is this program correct?

Comparing Types

int i = 12
float f = i

Is this program correct?
- No, floats and integers have different runtime representations

Comparing Types

int i = 12
float f = i

Is this program correct?
- No, floats and integers have different runtime representations
- Yes, possible by coercion

Comparing Types

int i = 12
float f = i

Is this program correct?
- No, floats and integers have different runtime representations
- Yes, possible by coercion

‣ Coercion requires insertion of code to convert between representations

Comparing Types

int i = 12
float f = i

Is this program correct?
- No, floats and integers have different runtime representations
- Yes, possible by coercion

‣ Coercion requires insertion of code to convert between representations
- How is this different than subtyping?

Comparing Types

int i = 12
float f = i

Is this program correct?
- No, floats and integers have different runtime representations
- Yes, possible by coercion

‣ Coercion requires insertion of code to convert between representations
- How is this different than subtyping?

‣ Subtyping says that the use of the unchanged value is safe

Type Relations

What kind of relations between types?
- Equality T=T – syntactic or structural
- Subtyping T<:T – nominal or structural
- Coercion – requires code insertion

Why Type Checking?

20

Dynamically Typed vs Statically Typed
- Dynamic: type checking at run-time

- Static: type checking at compile-time (before run-time)

What does it mean to type check?
- Type safety: guarantee absence of run-time type errors

Why static type checking?
- Avoid overhead of run-time type checking

- Fail faster: find (type) errors at compile time

- Find all (type) errors: some errors may not be triggered by testing

- But: not all errors can be found statically (e.g. array bounds checking)

Why Type Checking? Some Discussion Points

Formalizing
Type Systems
(in the ChocoPy reference manual)

22

Formalizing Type Systems: Judgements and Inference Rules

hypotheses/premises

judgement

if the hypotheses/premises are true then
the judgment below the bar is true

proposition (e : T): expression e has type T

judgement: context %|- proposition

Formalizing Type Systems: Examples

Formalizing Type Systems: Examples

Formalizing Type Systems: Examples

Formalizing Type Systems: Examples

Intermezzo: Testing
Static Analysis

28

Testing Name Resolution

test inner name [[
 let type t = u
 type u = int
 var x: u := 0
 in
 x := 42 ;
 let type [[u]] = t
 var y: [[u]] := 0
 in
 y := 42
 end
end
]] resolve #2 to #1

test outer name [[
 let type t = u
 type [[u]] = int
 var x: [[u]] := 0
 in
 x := 42 ;
 let type u = t
 var y: u := 0
 in
 y := 42
 end
end
]] resolve #2 to #1

Testing Type Checking

test variable reference [[
 let type t = u
 type u = int
 var x: u := 0
 in
 x := 42 ;
 let type u = t
 var y: u := 0
 in
 y := [[x]]
 end
end
]] run get-type to INT()

test integer constant [[
 let type t = u
 type u = int
 var x: u := 0
 in
 x := 42 ;
 let type u = t
 var y: u := 0
 in
 y := [[42]]
 end
end
]] run get-type to INT()

Testing Errors

test undefined variable [[
 let type t = u
 type u = int
 var x: u := 0
 in
 x := 42 ;
 let type u = t
 var y: u := 0
 in
 y := [[z]]
 end
end
]] 1 error

test type error [[
 let type t = u
 type u = string
 var x: u := 0
 in
 x := 42 ;
 let type u = t
 var y: u := 0
 in
 y := [[x]]
 end
end
]] 1 error

Test Corner Cases

context-free superset

language

Type Checking using
High-level Typing Rules

33

34

Source
Code
Editor

Parse
Abstract
Syntax
Tree

Type Check

Check that names are used correctly and that expressions are well-typed

Errors

35

Source
Code
Editor

Abstract
Syntax
Tree

Errors
Type

Specification
SolveParse +

35

Source
Code
Editor

Abstract
Syntax
Tree

Errors
Type

Specification
Solve

language specific

Parse +

35

Source
Code
Editor

Abstract
Syntax
Tree

Errors
Type

Specification
Solve

language specific language
independent

Parse +

Separation of concerns

Type Checking with Specifications

Separation of concerns
- Language specific specification in terms of logical formalism

Type Checking with Specifications

Separation of concerns
- Language specific specification in terms of logical formalism
- Language independent algorithm to interpret specification

Type Checking with Specifications

Separation of concerns
- Language specific specification in terms of logical formalism
- Language independent algorithm to interpret specification
- Write specification, get an executable checker

Type Checking with Specifications

Separation of concerns
- Language specific specification in terms of logical formalism
- Language independent algorithm to interpret specification
- Write specification, get an executable checker

Advantages

Type Checking with Specifications

Separation of concerns
- Language specific specification in terms of logical formalism
- Language independent algorithm to interpret specification
- Write specification, get an executable checker

Advantages
- High-level, declarative specification

Type Checking with Specifications

Separation of concerns
- Language specific specification in terms of logical formalism
- Language independent algorithm to interpret specification
- Write specification, get an executable checker

Advantages
- High-level, declarative specification
- Abstract over algorithmic concerns

Type Checking with Specifications

Separation of concerns
- Language specific specification in terms of logical formalism
- Language independent algorithm to interpret specification
- Write specification, get an executable checker

Advantages
- High-level, declarative specification
- Abstract over algorithmic concerns
‣ Execution order

Type Checking with Specifications

Separation of concerns
- Language specific specification in terms of logical formalism
- Language independent algorithm to interpret specification
- Write specification, get an executable checker

Advantages
- High-level, declarative specification
- Abstract over algorithmic concerns
‣ Execution order
‣ Transparently support for inference

Type Checking with Specifications

Separation of concerns
- Language specific specification in terms of logical formalism
- Language independent algorithm to interpret specification
- Write specification, get an executable checker

Advantages
- High-level, declarative specification
- Abstract over algorithmic concerns
‣ Execution order
‣ Transparently support for inference

- Logical variables act as interface between different kinds of
premises

Type Checking with Specifications

What is Statix?
- Domain-specific specification language…

- … to write typing and name binding specification

- Comes with a solver to use for type checking

Statix

What is Statix?
- Domain-specific specification language…

- … to write typing and name binding specification

- Comes with a solver to use for type checking

What features does it support?
- Predicates defined by logical (Horn-clause) rules

- Rich binding structures using scope graphs

- Unification based inference

Statix

What is Statix?
- Domain-specific specification language…

- … to write typing and name binding specification

- Comes with a solver to use for type checking

What features does it support?
- Predicates defined by logical (Horn-clause) rules

- Rich binding structures using scope graphs

- Unification based inference

Limitations
- Restricted to the domain-specific (= restricted) model

‣ Not all name binding patterns in the wild can be expressed

- Hypothesis is that all sensible patterns are expressible

Statix

Constraint-based language with declarative semantics
- Understand type system without algorithmic reasoning

Name binding using scope graphs
- as part of constraint resolution

Implementation
- Solver interprets specification as type checker

- Sound wrt declarative semantics

- Scheduling of constraint resolution based on language independent

principles

Type System Specification in Statix

Statix by Example

39

Example Project: statix-sandbox/chicago

Concrete and
Abstract Syntax

module signatures/arithmetic-sig

imports signatures/base-sig

signature

 constructors

 Int : INT %-> Exp

 Min : Exp %-> Exp

 Add : Exp * Exp %-> Exp

 Sub : Exp * Exp %-> Exp

 Mul : Exp * Exp %-> Exp

 IntT : Type

From Concrete Syntax Definition to Abstract Syntax Signature

module base

imports lex

lexical sorts ID INT STRING

sorts Exp Type Val Decl Bind TYPE

context-free syntax

 Exp = <(<Exp>)> {bracket}

 Type = <(<Type>)> {bracket}

module signatures/base-sig

imports signatures/lex-sig

signature

 sorts

 ID = string

 INT = string

 STRING = string

 Exp Type Val Decl Bind TYPE

module arithmetic

imports base

context-free syntax

 Exp.Int = %<<INT%>>

 Exp.Min = [-[Exp]]

 Exp.Add = %<<Exp> + <Exp%>> {left}

 Exp.Sub = %<<Exp> - <Exp%>> {left}

 Exp.Mul = %<<Exp> * <Exp%>> {left}

 Type.IntT = <Int>

context-free priorities

 Exp.Mul > {left: Exp.Add Exp.Sub}

From Concrete Syntax Definition to Abstract Syntax Signature

1 + 2 * 3

Add(

 Int("1"),

 Mul(

 Int(“2"),

 Int(“3")))

module arithmetic

imports base

context-free syntax

 Exp.Int = %<<INT%>>

 Exp.Min = [-[Exp]]

 Exp.Add = %<<Exp> + <Exp%>> {left}

 Exp.Sub = %<<Exp> - <Exp%>> {left}

 Exp.Mul = %<<Exp> * <Exp%>> {left}

 Type.IntT = <Int>

context-free priorities

 Exp.Mul > {left: Exp.Add Exp.Sub}

module signatures/arithmetic-sig

imports signatures/base-sig

signature

 constructors

 Int : INT %-> Exp

 Min : Exp %-> Exp

 Add : Exp * Exp %-> Exp

 Sub : Exp * Exp %-> Exp

 Mul : Exp * Exp %-> Exp

 IntT : Type

1 + 2 * 3

From here we will use concrete syntax
examples and abstract syntax rules

Predicates

Predicates Represent Program Properties

module lang/base/statics

imports signatures/lang/base/syntax-sig

rules "// type of ""...

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules "// well-typedness of ""...

 declOk : scope * Decl

 declsOk maps declOk(*, list(*))

 bindOk : scope * scope * Bind

 bindsOk maps bindOk(*, *, list(*))

Statix is a pure logic programming language

Use maps to apply a predicate to
all elements of a list

Predicates Represent Program Properties

module lang/base/statics

imports signatures/lang/base/syntax-sig

rules "// type of ""...

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules "// well-typedness of ""...

 declOk : scope * Decl

 declsOk maps declOk(*, list(*))

 bindOk : scope * scope * Bind

 bindsOk maps bindOk(*, *, list(*))

Statix is a pure logic programming language

A Statix specification defines predicates

Use maps to apply a predicate to
all elements of a list

Predicates Represent Program Properties

module lang/base/statics

imports signatures/lang/base/syntax-sig

rules "// type of ""...

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules "// well-typedness of ""...

 declOk : scope * Decl

 declsOk maps declOk(*, list(*))

 bindOk : scope * scope * Bind

 bindsOk maps bindOk(*, *, list(*))

Statix is a pure logic programming language

A Statix specification defines predicates

If a predicate holds for some term, the term has
the property represented by the predicate

Use maps to apply a predicate to
all elements of a list

Predicates Represent Program Properties

module lang/base/statics

imports signatures/lang/base/syntax-sig

rules "// type of ""...

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules "// well-typedness of ""...

 declOk : scope * Decl

 declsOk maps declOk(*, list(*))

 bindOk : scope * scope * Bind

 bindsOk maps bindOk(*, *, list(*))

Statix is a pure logic programming language

A Statix specification defines predicates

If a predicate holds for some term, the term has
the property represented by the predicate

typeOfExp(s, e) %== T

expression e has type T in scope s

Use maps to apply a predicate to
all elements of a list

Predicates Represent Program Properties

module lang/base/statics

imports signatures/lang/base/syntax-sig

rules "// type of ""...

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules "// well-typedness of ""...

 declOk : scope * Decl

 declsOk maps declOk(*, list(*))

 bindOk : scope * scope * Bind

 bindsOk maps bindOk(*, *, list(*))

Statix is a pure logic programming language

A Statix specification defines predicates

If a predicate holds for some term, the term has
the property represented by the predicate

typeOfExp(s, e) %== T

expression e has type T in scope s

Use maps to apply a predicate to
all elements of a list

typeOfType(s, t) %== T

syntactic type t has semantic type T in scope s

Predicates Represent Program Properties

module lang/base/statics

imports signatures/lang/base/syntax-sig

rules "// type of ""...

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules "// well-typedness of ""...

 declOk : scope * Decl

 declsOk maps declOk(*, list(*))

 bindOk : scope * scope * Bind

 bindsOk maps bindOk(*, *, list(*))

Statix is a pure logic programming language

A Statix specification defines predicates

If a predicate holds for some term, the term has
the property represented by the predicate

typeOfExp(s, e) %== T

expression e has type T in scope s

declOk(s, d)

declaration d is well-defined (Ok) in scope s

Use maps to apply a predicate to
all elements of a list

typeOfType(s, t) %== T

syntactic type t has semantic type T in scope s

Functional Notation vs Predicate Notation

rules

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

Functional Notation vs Predicate Notation

rules

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules

 typeOfType : scope * Type * TYPE

 typeOfExp : scope * Exp * TYPE

Functional Notation vs Predicate Notation

rules

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules

 typeOfType : scope * Type * TYPE

 typeOfExp : scope * Exp * TYPE

typeOfExp(s, e) %== T

expression e has type T in scope s

Functional Notation vs Predicate Notation

rules

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules

 typeOfType : scope * Type * TYPE

 typeOfExp : scope * Exp * TYPE

typeOfExp(s, e) %== T

expression e has type T in scope s

typeOfExp(s, e, T)

expression e has type T in scope s

Functional Notation vs Predicate Notation

rules

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules

 typeOfType : scope * Type * TYPE

 typeOfExp : scope * Exp * TYPE

typeOfExp(s, e) %== T

expression e has type T in scope s

typeOfExp(s, e, T)

expression e has type T in scope s

One expression has one type

Functional Notation vs Predicate Notation

rules

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules

 typeOfType : scope * Type * TYPE

 typeOfExp : scope * Exp * TYPE

typeOfExp(s, e) %== T

expression e has type T in scope s

typeOfExp(s, e, T)

expression e has type T in scope s

One expression has one type One expression can have

multiple types

Functional Notation vs Predicate Notation

rules

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

rules

 typeOfType : scope * Type * TYPE

 typeOfExp : scope * Exp * TYPE

typeOfExp(s, e) %== T

expression e has type T in scope s

typeOfExp(s, e, T)

expression e has type T in scope s

One expression has one type One expression can have

multiple types

(Solver does not match on type argument)

Predicates are Defined by Rules

typeOfExp : scope * Exp %-> TYPE

Predicates are Defined by Rules

typeOfExp : scope * Exp %-> TYPE Predicate

Predicates are Defined by Rules

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

typeOfExp : scope * Exp %-> TYPE Predicate

Rule

Predicates are Defined by Rules

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Predicates are Defined by Rules

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Predicates are Defined by Rules

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

If the premises are true, the head is true

For all s, e1, e2

Declarative Reading vs Operational Reading

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT()

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Declarative Reading vs Operational Reading

Declarative Names

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT()

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Declarative Reading vs Operational Reading

Declarative Names

typeOfExp(e) %== T

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT()

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Declarative Reading vs Operational Reading

Declarative Names

The type of expression e is T

typeOfExp(e) %== T

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT()

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Declarative Reading vs Operational Reading

Declarative Names

The type of expression e is T

typeOfExp(e) %== T

Type system defines a (functional) relation

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT()

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Declarative Reading vs Operational Reading

Declarative Names Operational Names

The type of expression e is T

typeOfExp(e) %== T

Type system defines a (functional) relation

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT()

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Declarative Reading vs Operational Reading

Declarative Names Operational Names

The type of expression e is T

typeCheck(e) = TtypeOfExp(e) %== T

Type system defines a (functional) relation

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT()

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Declarative Reading vs Operational Reading

Declarative Names Operational Names

The type of expression e is T Type checking expression e produces type T

typeCheck(e) = TtypeOfExp(e) %== T

Type system defines a (functional) relation

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT()

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Declarative Reading vs Operational Reading

Declarative Names Operational Names

The type of expression e is T Type checking expression e produces type T

typeCheck(e) = TtypeOfExp(e) %== T

Type system defines a (functional) relation Type checking is a process

typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT()

typeOfExp : scope * Exp %-> TYPE Predicate

Rule Head

Premises

Syntax-Directed Definitions: One Rule per Language Construct

module signatures/arithmetic-sig

imports signatures/base-sig

signature

 constructors

 Int : INT %-> Exp

 Min : Exp %-> Exp

 Add : Exp * Exp %-> Exp

 Sub : Exp * Exp %-> Exp

 Mul : Exp * Exp %-> Exp

 IntT : Type

module statics/arithmetic

imports statics/base

imports signatures/arithmetic-sig

signature

 constructors

 INT : TYPE

rules

 typeOfType(s, IntT()) = INT().

rules

 typeOfExp(s, Int(i)) = INT().

 typeOfExp(s, Min(e)) = INT() :-

 typeOfExp(s, e) %== INT().

 typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

 typeOfExp(s, Sub(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

 typeOfExp(s, Mul(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

module statix/base

imports signatures/base-sig

rules

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

From Now: No Module Headers

signature

 constructors

 Int : INT %-> Exp

 Min : Exp %-> Exp

 Add : Exp * Exp %-> Exp

 Sub : Exp * Exp %-> Exp

 Mul : Exp * Exp %-> Exp

 IntT : Type

signature

 constructors

 INT : TYPE

rules

 typeOfType(s, IntT()) = INT().

rules

 typeOfExp(s, Int(i)) = INT().

 typeOfExp(s, Min(e)) = INT() :-

 typeOfExp(s, e) %== INT().

 typeOfExp(s, Add(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

 typeOfExp(s, Sub(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

 typeOfExp(s, Mul(e1, e2)) = INT() :-

 typeOfExp(s, e1) %== INT(),

 typeOfExp(s, e2) %== INT().

rules

 typeOfType : scope * Type %-> TYPE

 typeOfExp : scope * Exp %-> TYPE

Types Are Just Terms

signature

 constructors

 BoolT : Type

 BOOL : TYPE

 True : Exp

 False : Exp

 Not : Exp %-> Exp

 And : Exp * Exp %-> Exp

 Or : Exp * Exp %-> Exp

 If : Exp * Exp * Exp %-> Exp

 Eq : Exp * Exp %-> Exp

rules

 typeOfType(s, BoolT()) = BOOL().

rules

 typeOfExp(s, True()) = BOOL().

 typeOfExp(s, False()) = BOOL().

 typeOfExp(s, And(e1, e2)) = BOOL() :-

 typeOfExp(s, e1) %== BOOL(),

 typeOfExp(s, e2) %== BOOL().

 typeOfExp(s, If(e1, e2, e3)) = lub(T1, T2) :-

 typeOfExp(s, e1) %== BOOL(),

 typeOfExp(s, e2) %== T1,

 typeOfExp(s, e3) %== T2,

 equitype(T1, T2).

 typeOfExp(s, Eq(e1, e2)) = BOOL() :- {T1 T2}

 typeOfExp(s, e1) %== T1,

 typeOfExp(s, e2) %== T2,

 equitype(T1, T2).

rules "// operations on types

 subtype : Exp * TYPE * TYPE

 equitype : TYPE * TYPE

 lub : TYPE * TYPE %-> TYPE

 subtype(_, T, T).

 equitype(T, T).

 lub(T, T) = T.

From Declarative Definition to Type Checker

From Declarative Definition to Type Checker

Parser
Syntax

Definition in
SDF3

From Declarative Definition to Type Checker

Parser

AST

Syntax
Definition in

SDF3

Parse

Errors

Syntax

Highlighting

From Declarative Definition to Type Checker

Parser

Solver

AST

Syntax
Definition in

SDF3

Type System
in Statix

Signature in
Statix

Parse

Errors

Syntax

Highlighting

From Declarative Definition to Type Checker

Parser

Solver

AST

Syntax
Definition in

SDF3

Type System
in Statix

Signature in
Statix

Parse

Errors

Syntax

Highlighting

Type

Errors

Statix in Spoofax

Programs with
Names

Programs with Names

module Names {

 module Even {

 import Odd

 def even = fun(x) {

 if x %== 0 then true else odd(x - 1)

 }

 }

 module Odd {

 import Even

 def odd = fun(x) {

 if x %== 0 then false else even(x - 1)

 }

 }

 module Compute {

 type Result = { input : Int, output : Bool }

 def compute = fun(x) {

 Result{ input = x, output = Odd@odd x }

 }

 }

}

Programs with Names

module Names {

 module Even {

 import Odd

 def even = fun(x) {

 if x %== 0 then true else odd(x - 1)

 }

 }

 module Odd {

 import Even

 def odd = fun(x) {

 if x %== 0 then false else even(x - 1)

 }

 }

 module Compute {

 type Result = { input : Int, output : Bool }

 def compute = fun(x) {

 Result{ input = x, output = Odd@odd x }

 }

 }

}

Name binding key in programming
languages

Programs with Names

module Names {

 module Even {

 import Odd

 def even = fun(x) {

 if x %== 0 then true else odd(x - 1)

 }

 }

 module Odd {

 import Even

 def odd = fun(x) {

 if x %== 0 then false else even(x - 1)

 }

 }

 module Compute {

 type Result = { input : Int, output : Bool }

 def compute = fun(x) {

 Result{ input = x, output = Odd@odd x }

 }

 }

}

Name binding key in programming
languages

Many name binding patterns

Programs with Names

module Names {

 module Even {

 import Odd

 def even = fun(x) {

 if x %== 0 then true else odd(x - 1)

 }

 }

 module Odd {

 import Even

 def odd = fun(x) {

 if x %== 0 then false else even(x - 1)

 }

 }

 module Compute {

 type Result = { input : Int, output : Bool }

 def compute = fun(x) {

 Result{ input = x, output = Odd@odd x }

 }

 }

}

Name binding key in programming
languages

Many name binding patterns

Deal with erroneous programs

Programs with Names

module Names {

 module Even {

 import Odd

 def even = fun(x) {

 if x %== 0 then true else odd(x - 1)

 }

 }

 module Odd {

 import Even

 def odd = fun(x) {

 if x %== 0 then false else even(x - 1)

 }

 }

 module Compute {

 type Result = { input : Int, output : Bool }

 def compute = fun(x) {

 Result{ input = x, output = Odd@odd x }

 }

 }

}

Name binding key in programming
languages

Many name binding patterns

Name resolution complicates

type checkers, compilers

Deal with erroneous programs

Programs with Names

module Names {

 module Even {

 import Odd

 def even = fun(x) {

 if x %== 0 then true else odd(x - 1)

 }

 }

 module Odd {

 import Even

 def odd = fun(x) {

 if x %== 0 then false else even(x - 1)

 }

 }

 module Compute {

 type Result = { input : Int, output : Bool }

 def compute = fun(x) {

 Result{ input = x, output = Odd@odd x }

 }

 }

}

Name binding key in programming
languages

Many name binding patterns

Name resolution complicates

type checkers, compilers

Ad hoc non-declarative treatment

Deal with erroneous programs

Programs with Names

module Names {

 module Even {

 import Odd

 def even = fun(x) {

 if x %== 0 then true else odd(x - 1)

 }

 }

 module Odd {

 import Even

 def odd = fun(x) {

 if x %== 0 then false else even(x - 1)

 }

 }

 module Compute {

 type Result = { input : Int, output : Bool }

 def compute = fun(x) {

 Result{ input = x, output = Odd@odd x }

 }

 }

}

Name binding key in programming
languages

Many name binding patterns

Name resolution complicates

type checkers, compilers

Ad hoc non-declarative treatment

A systematic, uniform approach to
name resolution?

Deal with erroneous programs

Name Resolution with Scope Graphs

let function fact(n : int) : int =
 if n < 1 then
 1
 else
 n * fact(n - 1)
 in
 fact(10)
end

Program

Name Resolution with Scope Graphs

let function fact(n : int) : int =
 if n < 1 then
 1
 else
 n * fact(n - 1)
 in
 fact(10)
end

Scope GraphProgram

Name Resolution with Scope Graphs

let function fact(n : int) : int =
 if n < 1 then
 1
 else
 n * fact(n - 1)
 in
 fact(10)
end

S1

S2

Scope GraphProgram

Name Resolution with Scope Graphs

let function fact(n : int) : int =
 if n < 1 then
 1
 else
 n * fact(n - 1)
 in
 fact(10)
end

fact S1

S2n

Scope GraphProgram

Name Resolution with Scope Graphs

let function fact(n : int) : int =
 if n < 1 then
 1
 else
 n * fact(n - 1)
 in
 fact(10)
end

fact S1 fact

S2n

n

fact

nn

Scope GraphProgram

Name Resolution with Scope Graphs

let function fact(n : int) : int =
 if n < 1 then
 1
 else
 n * fact(n - 1)
 in
 fact(10)
end

fact S1 fact

S2n

n

fact

nn

Scope GraphProgram

Name Resolution

Name Resolution with Scope Graphs

let function fact(n : int) : int =
 if n < 1 then
 1
 else
 n * fact(n - 1)
 in
 fact(10)
end

fact S1 fact

S2n

n

fact

nn

Scope GraphProgram

Name Resolution

Name Resolution with Scope Graphs in Statix

Declarations and References

Lexical Scope

Records

Modules

Scheduling Resolution

Permission to Extend

Reading Material

A Theory of Name Resolution
- Néron, Tolmach, Visser, Wachsmuth

- ESOP 2015

A constraint language for static semantic analysis based on scope graphs
- van Antwerpen, Néron, Tolmach, Visser, Wachsmuth

- PEPM 2016

Scopes as Types
- Van Antwerpen, Bach Poulsen, Rouvoet, Visser

- OOPSLA 2018

Knowing when to ask: sound scheduling of name resolution in type checkers derived from
declarative specifications
- Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, Eelco Visser.

- PACMPL 4(OOPSLA) 2020

Scope States: Guarding Safety of Name Resolution in Parallel Type Checkers
- Hendrik van Antwerpen, Eelco Visser.

- ECOOP 2021

59

Publications on Statix

Next: Name Binding
and Name Resolution

60

