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Reading Material

The following papers add background, conceptual exposition, and examples to the material from 
the slides. Some notation and technical details have been changed; check the documentation.
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This paper introduces the Statix DSL for definition of type systems.


Shows how to use scope graphs for structural type and generic types


Explains the need for scheduling in type checkers

OOPSLA 2018

https://doi.org/10.1145/3276484

https://doi.org/10.1145/3276484
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which impedes reasoning about the soundness of the type checker with respect to the speci!cation. A
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Formalizes the declarative and operational semantics of Statix Core


Introduces concept of critical edges to determine whether a query can be 
executed 


Extends the type system of Statix with ownership in order to statically 
guarantee that critical edges can be computed

OOPSLA 2020

https://doi.org/10.1145/3428248

https://doi.org/10.1145/3428248
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Good introduction to unification, which is the basis of many 
type inference approaches, constraint languages, and logic 
programming languages. Read sections 1, and 2.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Baader et al. “Chapter 8 - Unification Theory.” In Handbook of 
Automated Reasoning, 445–533. Amsterdam: North-Holland, 2001.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
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- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

What are the premises?
- Logical assertions that should hold for well-typed programs
- Specification language determines what assertions can be made
‣ Type equality and inequality, name resolution, ...

- Determines the expressiveness of the specification!

Solving
- Given an initial predicate that must hold, ...
- find an assignment for all logical variables, such that the predicate is satisfied
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- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how
- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Separation of computation from program structure
- Typing rules follow the structure of the program
- Solver is flexible in order of resolution

Approach: reusable solver for the specification language
- Support logical variables for unknowns and infer their values
- Automatically determine correct resolution order
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What is the meaning of constraints?
- What is a valid solution?
- Or: in which models are the constraints satisfied?
- Can we describe this independent of an algorithm to find a solution?

When are constraints satisfied?
- Formally described by the declarative semantics
- Written as G,ɸ ⊨ C 
- Satisfied in a model
‣ Substitution ɸ (read: phi)
‣ Scope graph G

- Describes for every type of constraint when it is satisfied
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What gives constraints meaning?
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Semantics of (a Subset of) Statix Constraints

C = t == t           // equality
  | r in s |-> d     // name resolution (short for query var … in s |-> [d])
  | C /\ C           // conjunction

G,ɸ ⊨ t == u

G,ɸ ⊨ r in s |-> d

G,ɸ ⊨ C1 /\ C2

if ɸ(t) = ɸ(u)

if  ɸ(r) = x
and ɸ(d) = x
and ɸ(s) = #i
and x resolves to x from #i in G

if G,ɸ ⊨ C1 and G,ɸ ⊨ C2

Syntax

Declarative semantics



Using the Semantics

G,ɸ ⊨ t == u 

    if ɸ(t) = ɸ(u) 

G,ɸ ⊨ r in s |-> d 

    if  ɸ(r) = x 

    and ɸ(d) = x 

    and ɸ(s) = #i 

    and x resolves to x from #i in G 

G,ɸ ⊨ C1 /\ C2 

    if  G,ɸ ⊨ C1 

    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end

ty1 == INT()
INT() == INT()
"i" in #s1 |-> d1
ty2 == INT()
"f" in #s0 |-> d2
ty3 == FUN(ty4,ty5)
ty4 == INT()
…

ɸ = { ty1 -> INT(),
      ty2 -> INT(),
      ty3 -> FUN(INT(),ty5),
      ty4 -> INT(),
      d1  -> "i",
      d2  -> "f"
    }

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Program Program constraints Unifier ɸ (model)

Scope graph G (model)Constraint semantics
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f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Object language 
variables
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G,ɸ ⊨ t == u 

    if ɸ(t) = ɸ(u) 

G,ɸ ⊨ r in s |-> d 
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What should a type checker do?
- Check that a program is well-typed!
- Resolve names, and check or compute types
- Report useful error messages
- Provide a representation of name and type information
‣ Type annotated AST

This information is used for
- Next compiler steps (optimization, code generation, …)
- IDE (error reporting, code completion, refactoring, …)
- Other tools (API documentation, …)

How are type checkers implemented?
20
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Computing Type of Expression (recap)

function (a : int) = a + 1

Fun("a", INT(),
    Plus(Var("a"), Int(1)))

FUN(INT(), INT())

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
  typeOfExp(s, e1) == INT(),
  typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
  typeOfTypeExp(s, te) == S,
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typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
  typeOfExp(s, e1) == INT(),
  typeOfExp(s, e2) == INT().
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What are challenges when implementing a type checker?
- Collecting necessary binding information before using it
- Gradually learning type information

What are the consequences of these challenges?
- The order of computation needs to be more flexible than the AST 

traversal
- Support explicit logical variables during solving
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<C; G, ɸ> ⟶ <C; G, ɸ>

          <t "== u, C; G, ɸ> ⟶ <C; G, ɸ'> where unify(ɸ,t,u) = ɸ'

      <s1 -L"-> s2, C; G, ɸ> ⟶ <C; G', ɸ> where ɸ(s1) = #i, ɸ(s2) = #j, 
                                                 G + {#i -L"-> #j} = G'

<r in s ""|-> t, C; G, ɸ> ⟶ <t "== d, C; G, ɸ> where ɸ(r) = x, ɸ(s) = #i,  
                                                 resolve(G, #i, x) = d

def solve(C):

  if <C; {}, {}> ⟶* <{}; G, ɸ">:

    return <G, ɸ>

  else:

    fail
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Solver = rewrite system
- Rewrite a constraint set + solution
- Simplifying and eliminating constraints
‣ Constraint selecting is non-deterministic
‣ Resolution order is controlled by side conditions on rewrite rules

- Rely on (other) solvers and algorithms for base cases
‣ Unification for term equality
‣ Scope graph resolution

- The solution is final if all constraints are eliminated

Does the order matter for the outcome?
- Confluence: the output is the same for any solving order
- Partly true for Statix
‣ Up to variable and scope names
‣ Only if all constraints are reduced
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What is the difference?
- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

How are these related?
- Soundness
‣ If the solver returns <G, ɸ>, then G,ɸ ⊨ C

- Completeness:
‣ If a G and ɸ exists such that G,ɸ ⊨ C, then the solver returns it
‣ If no such G or ɸ exists, the solver fails

- Principality
‣ The solver finds the most general ɸ
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Syntactic Terms

INT()
FUN(INT(),INT()) f(t0,…,tn)

function symbol

arity

f(t0,…,tn) == g(u0,…,um) if
- f = g, and n = m
- ti == ui for every i

Generic Terms

Syntactic Equality

terms      t, u
functions  f, g, h

arguments
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domain

f(g(),f(g(),b))

ɸ(a)         = t                  if { a -> t } in ɸ
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global ɸ 
def unify(t, u): 
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    t := ɸ(t) 
  if u is a variable: 
    u := ɸ(u) 
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global ɸ 
def unify(t, u): 
  if t is a variable: 
    t := ɸ(t) 
  if u is a variable: 
    u := ɸ(u) 
  if t is a variable and t == u: 
    pass 
  else if t == f(t1,...,tn) and u == g(u1,...,um): 
    if f == g and n == m: 
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Unification
global ɸ 
def unify(t, u): 
  if t is a variable: 
    t := ɸ(t) 
  if u is a variable: 
    u := ɸ(u) 
  if t is a variable and t == u: 
    pass 
  else if t == f(t1,...,tn) and u == g(u1,...,um): 
    if f == g and n == m: 
      for i := 1 to n: 
        unify(ti, ui) 
    else: 
      fail "different function symbols" 
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instantiate variable

t == f(t1,...,t5), u == f(u1,…,u5) 
matching terms

t == f(t0,...,t5), u == g(u0,...,u3) 
mismatching terms
t == f(t0,...,t5), u == b 
swap terms
t == a, u == k(g(a,f())) 
recursive terms
t == a, u == k(u0,...,u5) 
extend unifier

u == b 
instantiate variable
b == b 
equal variables
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Soundness
- If the algorithm returns a unifier, it makes the terms equal

Completeness
- If a unifier exists, the algorithm will return it

Principality
- If the algorithm returns a unifier, it is a most general unifier

Termination
- The algorithm always returns a unifier or fails
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Efficient Unification
with Union-Find



Complexity of Unification

h(a1        , …,an             , f(b0,b0), …, f(bn-1,bn-1), an) ==
h(f(a0,a0), …,f(an-1,an-1), b1,       …, bn-1          , bn)

terms        t, u
functions    f, g, h
variables    a, b, c
substitution ɸ



Complexity of Unification

h(a1        , …,an             , f(b0,b0), …, f(bn-1,bn-1), an) ==
h(f(a0,a0), …,f(an-1,an-1), b1,       …, bn-1          , bn)

a1 -> f(a0,a0)
a2 -> f(f(a0,a0), f(a0,a0))
ai -> … 2i+1-1 subterms …
b1 -> f(a0,a0)
b2 -> f(f(a0,a0), f(a0,a0))
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Main idea
- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations
- Path compression make recurring lookups fast
- Tree balancing keeps paths short

Complexity
- Linear in space and almost linear (inverse Ackermann) in time
- Easy to extract triangular unifier from graph
- Postpone occurrence checks to prevent traversing (potentially) large terms  
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- Unification
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What is the relation between solver and semantics?
- Soundness: any solution satisfies the semantics
- Completeness: if a solution exists, the solver finds it
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