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- Term equality and unification



Reading Material

The following papers add background, conceptual exposition, and examples to the material from 
the slides. Some notation and technical details have been changed; check the documentation.
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This paper introduces the Statix DSL for definition of type systems.


Shows how to use scope graphs for structural type and generic types


Explains the need for scheduling in type checkers

OOPSLA 2018

https://doi.org/10.1145/3276484

https://doi.org/10.1145/3276484
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There is a large gap between the speci!cation of type systems and the implementation of their type checkers,
which impedes reasoning about the soundness of the type checker with respect to the speci!cation. A
vision to close this gap is to automatically obtain type checkers from declarative programming language
speci!cations. This moves the burden of proving correctness from a case-by-case basis for concrete languages
to a single correctness proof for the speci!cation language. This vision is obstructed by an aspect common
to all programming languages: name resolution. Naming and scoping are pervasive and complex aspects
of the static semantics of programming languages. Implementations of type checkers for languages with
name binding features such as modules, imports, classes, and inheritance interleave collection of binding
information (i.e., declarations, scoping structure, and imports) and querying that information. This requires
scheduling those two aspects in such a way that query answers are stable—i.e., they are computed only after
all relevant binding structure has been collected. Type checkers for concrete languages accomplish stability
using language-speci!c knowledge about the type system.

In this paper we give a language-independent characterization of necessary and su"cient conditions to
guarantee stability of name and type queries during type checking in terms of critical edges in an incomplete
scope graph. We use critical edges to give a formal small-step operational semantics to a declarative speci!ca-
tion language for type systems, that achieves soundness by delaying queries that may depend on missing
information. This yields type checkers for the speci!ed languages that are sound by construction—i.e., they
schedule queries so that the answers are stable, and only accept programs that are name- and type-correct
according to the declarative language speci!cation. We implement this approach, and evaluate it against
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Formalizes the declarative and operational semantics of Statix Core


Introduces concept of critical edges to determine whether a query can be 
executed 


Extends the type system of Statix with ownership in order to statically 
guarantee that critical edges can be computed

OOPSLA 2020

https://doi.org/10.1145/3428248

https://doi.org/10.1145/3428248
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Good introduction to unification, which is the basis of many 
type inference approaches, constraint languages, and logic 
programming languages. Read sections 1, and 2.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Baader et al. “Chapter 8 - Unification Theory.” In Handbook of 
Automated Reasoning, 445–533. Amsterdam: North-Holland, 2001.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
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What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)

- Syntax-directed, match on program constructs (at least in Statix)

- Specification of what it means to be well-typed!


What are the premises?

- Logical assertions that should hold for well-typed programs

- Specification language determines what assertions can be made

‣ Type equality and inequality, name resolution, ...


- Determines the expressiveness of the specification!


Solving

- Given an initial predicate that must hold, ...

- find an assignment for all logical variables, such that the predicate is satisfied

9

Typing Rules



Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use

- Dealing with unknown (type) values


Separation of what from how

- Typing rules says what is a well-typed program

- Solver says how to determine that a program is well-typed


Separation of computation from program structure

- Typing rules follow the structure of the program

- Solver is flexible in order of resolution


Approach: reusable solver for the specification language

- Support logical variables for unknowns and infer their values

- Automatically determine correct resolution order

10

Typing Checking



Constraint Semantics



What is the meaning of constraints?

- What is a valid solution?

- Or: in which models are the constraints satisfied?

- Can we describe this independent of an algorithm to find a solution?


When are constraints satisfied?

- Formally described by the declarative semantics

- Written as G,ɸ ⊨ C 

- Satisfied in a model

‣ Substitution ɸ (read: phi)

‣ Scope graph G


- Describes for every type of constraint when it is satisfied
12

What gives constraints meaning?

ty == FUN(ty1,ty2)  
Var{x} in s |-> d

ty1 == INT()



Semantics of (a Subset of) Statix Constraints

C = t == t           // equality

  | r in s |-> d     // name resolution (short for query var … in s |-> [d])

  | C /\ C           // conjunction

G,ɸ ⊨ t == u

G,ɸ ⊨ r in s |-> d

G,ɸ ⊨ C1 /\ C2

if ɸ(t) = ɸ(u)

if  ɸ(r) = x

and ɸ(d) = x

and ɸ(s) = #i

and x resolves to x from #i in G

if G,ɸ ⊨ C1 and G,ɸ ⊨ C2

Syntax

Declarative semantics



Using the Semantics

G,ɸ ⊨ t == u


    if ɸ(t) = ɸ(u)


G,ɸ ⊨ r in s |-> d


    if  ɸ(r) = x


    and ɸ(d) = x


    and ɸ(s) = #i


    and x resolves to x from #i in G


G,ɸ ⊨ C1 /\ C2


    if  G,ɸ ⊨ C1


    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end


ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

      ty2 -> INT(),

      ty3 -> FUN(INT(),ty5),

      ty4 -> INT(),

      d1  -> "i",

      d2  -> "f"

    }


s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Program Program constraints Unifier ɸ (model)

Scope graph G (model)Constraint semantics



Different Kinds of Variables

G,ɸ ⊨ t == u


    if ɸ(t) = ɸ(u)


G,ɸ ⊨ r in s |-> d


    if  ɸ(r) = x


    and ɸ(d) = x


    and ɸ(s) = #i


    and x resolves to x from #i in G


G,ɸ ⊨ C1 /\ C2


    if  G,ɸ ⊨ C1


    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end


ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

      ty2 -> INT(),

      ty3 -> FUN(INT(),ty5),

      ty4 -> INT(),

      d1  -> "i",

      d2  -> "f"

    }


Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)



Different Kinds of Variables

G,ɸ ⊨ t == u


    if ɸ(t) = ɸ(u)


G,ɸ ⊨ r in s |-> d


    if  ɸ(r) = x


    and ɸ(d) = x


    and ɸ(s) = #i


    and x resolves to x from #i in G


G,ɸ ⊨ C1 /\ C2


    if  G,ɸ ⊨ C1


    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end


ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

      ty2 -> INT(),

      ty3 -> FUN(INT(),ty5),

      ty4 -> INT(),

      d1  -> "i",

      d2  -> "f"

    }


Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Object language 
variables



Different Kinds of Variables

G,ɸ ⊨ t == u


    if ɸ(t) = ɸ(u)


G,ɸ ⊨ r in s |-> d


    if  ɸ(r) = x


    and ɸ(d) = x


    and ɸ(s) = #i


    and x resolves to x from #i in G


G,ɸ ⊨ C1 /\ C2


    if  G,ɸ ⊨ C1


    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end


ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

      ty2 -> INT(),

      ty3 -> FUN(INT(),ty5),

      ty4 -> INT(),

      d1  -> "i",

      d2  -> "f"

    }


Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Constraint / logic 
variables



Different Kinds of Variables

G,ɸ ⊨ t == u


    if ɸ(t) = ɸ(u)


G,ɸ ⊨ r in s |-> d


    if  ɸ(r) = x


    and ɸ(d) = x


    and ɸ(s) = #i


    and x resolves to x from #i in G


G,ɸ ⊨ C1 /\ C2


    if  G,ɸ ⊨ C1


    and G,ɸ ⊨ C2

let
  function f1(i2 : int) : int =
    i3 + 1
in
  f4(14)
end


ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

      ty2 -> INT(),

      ty3 -> FUN(INT(),ty5),

      ty4 -> INT(),

      d1  -> "i",

      d2  -> "f"

    }


Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Semantics

meta-variables



Type Checking



What should a type checker do?

- Check that a program is well-typed!

- Resolve names, and check or compute types

- Report useful error messages

- Provide a representation of name and type information

‣ Type annotated AST


This information is used for

- Next compiler steps (optimization, code generation, …)

- IDE (error reporting, code completion, refactoring, …)

- Other tools (API documentation, …)


How are type checkers implemented?
20

How to check types?



Computing Type of Expression (recap)

- Can be executed top down, in premise order

- Could be written almost like this in a functional language

function (a : int) = a + 1

Fun("a", INT(),
    Plus(Var("a"), Int(1)))

FUN(INT(), INT())

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
  typeOfExp(s, e1) == INT(),
  typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
  typeOfTypeExp(s, te) == S,
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
  typeOfDecl of Var{x} in s |-> [(_, (_, T))].



Inferring the Type of a Parameter

- What are the consequences for our typing rules?

- Types are not known from the start, but learned gradually

- A simple top-down traversal is insufficient

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
  typeOfExp(s, e1) == INT(),
  typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
  typeOfTypeExp(s, te) == S,
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
  typeOfDecl of Var{x} in s |-> [(_, (_, T))].

function (a : int) = a + 1

Fun("a", INT(),
    Plus(Var("a"), Int(1)))

FUN(INT(), INT())

Unknown S!



Checking classes

How can we type check this program?

- Is there a possible single traversal strategy here?

- Why are the type annotations not enough?

- What strategy could be used?


Two-pass approach

- The first pass builds a class table

- The second pass checks expressions using the 

class table


Question

- Does this still work if we introduce nested 

classes?

class A {

    B m() {

        return new C();

    }

}


class B {

    int i;

}


class C extends B {

   int m(A a) {

        return a.m().i;

    }

}



Variables and Constraints

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
  typeOfExp(s, e1) == INT(),
  typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
  typeOfTypeExp(s, te) == S,
  new s_fun, s_fun -P-> s,
  s_fun -> Var{x} with typeOfDecl S,
  typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
  typeOfDecl of Var{x} in s |-> [(_, (_, T))].

function (a : int) = a + 1

Fun("a", INT(),
    Plus(Var("a"), Int(1)))

FUN(?S, INT()) ?S == INT()+

?S := INT()



What are challenges when implementing a type checker?

- Collecting necessary binding information before using it

- Gradually learning type information


What are the consequences of these challenges?

- The order of computation needs to be more flexible than the AST 

traversal

- Support explicit logical variables during solving

25

How to check types?



Solving Constraints



Solving by Rewriting

C

{}; {}

Constraint

{}

{}

Solution

C'

G'; ɸ'

C''

G''; ɸ''

{}

G; ɸ...



Solving by Rewriting

<C; G, ɸ> ⟶ <C; G, ɸ>

          <t == u, C; G, ɸ> ⟶ <C; G, ɸ'> where unify(ɸ,t,u) = ɸ'


      <s1 -L-> s2, C; G, ɸ> ⟶ <C; G', ɸ> where ɸ(s1) = #i, ɸ(s2) = #j, 
                                                 G + {#i -L-> #j} = G'


<r in s |-> t, C; G, ɸ> ⟶ <t == d, C; G, ɸ> where ɸ(r) = x, ɸ(s) = #i,  
                                                 resolve(G, #i, x) = d

def solve(C):

  if <C; {}, {}> ⟶* <{}; G, ɸ>:

    return <G, ɸ>

  else:

    fail

Scope graph and 
name resolution 
algorithm don't have 
to know about logical 
variables 

Non-deterministic 
constraint selection



Solver = rewrite system

- Rewrite a constraint set + solution

- Simplifying and eliminating constraints

‣ Constraint selecting is non-deterministic

‣ Resolution order is controlled by side conditions on rewrite rules


- Rely on (other) solvers and algorithms for base cases

‣ Unification for term equality

‣ Scope graph resolution


- The solution is final if all constraints are eliminated


Does the order matter for the outcome?

- Confluence: the output is the same for any solving order

- Partly true for Statix

‣ Up to variable and scope names

‣ Only if all constraints are reduced

29

Solving by Rewriting

29



What is the difference?

- Algorithm computes a solution (= model)

- Semantics describes when a constraint is satisfied by a model


How are these related?

- Soundness

‣ If the solver returns <G, ɸ>, then G,ɸ ⊨ C


- Completeness:

‣ If a G and ɸ exists such that G,ɸ ⊨ C, then the solver returns it

‣ If no such G or ɸ exists, the solver fails


- Principality

‣ The solver finds the most general ɸ

30

Semantics vs Algorithm



Term Equality 

& Unification



Syntactic Terms

INT()

FUN(INT(),INT()) f(t0,…,tn)

function symbol

arity

f(t0,…,tn) == g(u0,…,um) if

- f = g, and n = m

- ti == ui for every i

Generic Terms

Syntactic Equality

terms      t, u

functions  f, g, h

arguments



Variables and Substitution

f(g(),a)

terms        t, u

functions    f, g, h

variables    a, b, c

substitution ɸ

ground term: a term without variables

ɸ = { a -> f(g(),b), b -> h() }

domain

f(g(),f(g(),b))

ɸ(a)         = t                  if { a -> t } in ɸ

ɸ(a)         = a                  otherwise

ɸ(f(t0,…,tn)) = f(ɸ(t0),…,ɸ(tn))

variable substitution



Unifiers

f(a,g()) == f(h(),b) a -> h()

b -> g()

g(a,f(b)) == g(f(h()),a) a -> f(h())

b -> h()

f(a,h()) == g(h(),b) no unifier, f != g

terms        t, u

functions    f, g, h

variables    a, b, c

substitution ɸ

f(h(),g()) == f(h(),g())

g(f(h()),f(h())) == g(f(h()),f(h()))

f(b,b) == b b -> f(b,b) not idempotent

unifier: a substitution that makes terms equal



Most General Unifiers terms        t, u

functions    f, g, h

variables    a, b, c

substitution ɸ

f(a,b) == f(b,c)

a -> g()

b -> g()

c -> g()

a -> b

c -> b

f(g(),g()) == f(g(),g())

f(b,b) == f(b,b)

b -> a

c -> a f(a,a) == f(a,a)most general


unifiers



Most General Unifiers

a -> g()

b -> g()

c -> g()

a -> b

b -> b

c -> b

a -> a

b -> a

c -> a

a -> b

b -> b

c -> b

terms        t, u

functions    f, g, h

variables    a, b, c

substitution ɸ

b -> g()

b -> aa -> b

b -> b

c -> b

a -> a

b -> a

c -> a

a -> b

every unifier is an instance of a most general unifier

(implicit) identity case

most general unifiers are related by renaming substitutions



Unification
global ɸ

def unify(t, u):

  if t is a variable:

    t := ɸ(t)

  if u is a variable:

    u := ɸ(u)

  if t is a variable and t == u:

    pass

  else if t == f(t1,...,tn) and u == g(u1,...,um):

    if f == g and n == m:

      for i := 1 to n:

        unify(ti, ui)

    else:

      fail "different function symbols"

  else if t is not a variable:

    unify(u, t)

  else if t occurs in u:

    fail "recursive term"

  else:

    ɸ += { t -> u }

terms        t, u

functions    f, g, h

variables    a, b, c

substitution ɸt == a 

instantiate variable

t == f(t1,...,t5), u == f(u1,…,u5) 
matching terms

t == f(t0,...,t5), u == g(u0,...,u3) 
mismatching terms
t == f(t0,...,t5), u == b 
swap terms
t == a, u == k(g(a,f())) 
recursive terms
t == a, u == k(u0,...,u5) 
extend unifier

u == b 
instantiate variable
b == b 
equal variables



Soundness

- If the algorithm returns a unifier, it makes the terms equal


Completeness

- If a unifier exists, the algorithm will return it


Principality

- If the algorithm returns a unifier, it is a most general unifier


Termination

- The algorithm always returns a unifier or fails

38

Properties of Unification



Efficient Unification

with Union-Find



Complexity of Unification

Space complexity

- Exponential

- Representation of  unifier


Time complexity

- Exponential

- Recursive calls on terms


Solution

- Union-Find algorithm

- Complexity growth can be 

considered constant 

h(a1        , …,an             , f(b0,b0), …, f(bn-1,bn-1), an) ==

h(f(a0,a0), …,f(an-1,an-1), b1,       …, bn-1          , bn)

a1 -> f(a0,a0)

a2 -> f(f(a0,a0), f(a0,a0))

ai -> … 2i+1-1 subterms …

b1 -> f(a0,a0)

b2 -> f(f(a0,a0), f(a0,a0))

bi -> … 2i+1-1 subterms …

terms        t, u

functions    f, g, h

variables    a, b, c

substitution ɸ

a1 -> f(a0,a0)

a2 -> f(a1,a1)

ai -> … 3 subterms …

b1 -> f(a0,a0)

b2 -> f(a1,a1)

bi -> … 3 subterms …

fully applied triangular



Set Representatives

FIND(a):  
  b := rep(a)  
  if b == a:  
     return a  
  else  
     return FIND(b)  
 
 

UNION(a1,a2):  
  b1 := FIND(a1)  
  b2 := FIND(a2)  
  LINK(b1,b2)  

LINK(a1,a2):  
  rep(a1) := a2  
 
 
 
 

a == b  
c == a

u == w  
v == u  
x == v

x == c

a

b c

u

w v

x

representative



FIND(a):

  b := rep(a)

  if b == a:

     return a

  else

     b := FIND(b)

     rep(a) := b

     return b


UNION(a1,a2):  
  b1 := FIND(a1)

  b2 := FIND(a2)

  LINK(b1,b2)  

LINK(a1,a2):  
  rep(a1) := a2


FIND(a):  
  b := rep(a)  
  if b == a:  
     return a  
  else  
     return FIND(b)  
 
 

UNION(a1,a2):  
  b1 := FIND(a1)  
  b2 := FIND(a2)  
  LINK(b1,b2)  

LINK(a1,a2):  
  rep(a1) := a2  
 
 
 
 

Path Compression

…

x == b

x == c

x == w

x == v

a

b c

u

w v

x



Tree Balancing

FIND(a):

  b := rep(a)

  if b == a:

     return a

  else

     b := FIND(b)

     rep(a) := b

     return b


UNION(a1,a2):

  b1 := FIND(a1)

  b2 := FIND(a2)

  LINK(b1,b2)  

LINK(a1,a2):  
  if size(a2) > size(a1):

     rep(a1) := a2

     size(a2) += size(a1)

  else:

     rep(a2) := a1

     size(a1) += size(a2)

…

x == c

a

b c

u

w v

x
1

21

4

11

3

3 steps

2 steps

?

FIND(a):

  b := rep(a)

  if b == a:

     return a

  else

     b := FIND(b)

     rep(a) := b

     return b


UNION(a1,a2):  
  b1 := FIND(a1)

  b2 := FIND(a2)

  LINK(b1,b2)  

LINK(a1,a2):  
  rep(a1) := a2




The Complex Case

h(a1        , …,an             , f(b0,b0), …, f(bn-1,bn-1), an) ==

h(f(a0,a0), …,f(an-1,an-1), b1,       …, bn-1          , bn)

a1

a0

an-1

an

b1

b0

bn-1

bn

f(a0,a0)

f(an-2,an-2)

f(an-1,an-1)

f(b0,b0)

f(bn-2,bn-2)

f(bn-1,bn-1)

an == bn

f(an-1,an-1) == f(bn-1,bn-1)


an-1 == bn-1      an-1 == bn-1

f(an-2,an-2) == f(bn-2,bn-2)


⠸

a1 == b1      a1 == b1

f(a0,a0) == f(b0,b0)


a0 == b0      a0 == b0

How about occurrence checks? Postpone!



Main idea

- Represent unifier as graph

- One variable represent equivalence class

- Replace substitution by union & find operations

- Testing equality becomes testing node identity


Optimizations

- Path compression make recurring lookups fast

- Tree balancing keeps paths short


Complexity

- Linear in space and almost linear (inverse Ackermann) in time

- Easy to extract triangular unifier from graph

- Postpone occurrence checks to prevent traversing (potentially) large terms  
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Union-Find
Martelli, Montanari. An Efficient 
Unification Algorithm. TOPLAS, 1982



Conclusion



What is the meaning of constraints?

- Formally described by constraint semantics

- Semantics classifies solutions, but do not compute them

- Semantics is expressed in terms of other theories


‣ Syntactic equality

‣ Scope graph resolution


What techniques can we use to implement solvers?

- Constraint simplification


‣ Simplification rules

‣ Depends on built-in procedures to unify or resolve names


- Unification

‣ Unifiers make terms with variables equal

‣ Unification computes most general unifiers


What is the relation between solver and semantics?

- Soundness: any solution satisfies the semantics

- Completeness: if a solution exists, the solver finds it

- Principality: the solver computes most general solutions
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Summary
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