Constraint Semantics and Constraint Resolution

Hendrik van Antwerpen
Eelco Visser

]
TUDelft

CS4200 | Compiler Construction | September 30, 2021

This lecture

Source Abstract
Code Syntax
Editor Tree

Type Solution/
Specification Errors

- Type checking with type specifications

- Semantics of a type specification

- Type checking algorithms

- Constraint solving for type specifications
- Term equality and unification

Reading Material

The following papers add background, conceptual exposition, and examples to the material from
the slides. Some notation and technical details have been changed; check the documentation.

This paper introduces the Statix DSL for definition of type systems.
Shows how to use scope graphs for structural type and generic types

Explains the need for scheduling in type checkers

OOPSLA 2018

https://dol.org/10.1145/3276484

Scopes as Types

HENDRIK VAN ANTWERPEN, Delft University of Technology, Netherlands
CASPER BACH POULSEN, Delft University of Technology, Netherlands
ARJEN ROUVOET, Delft University of Technology. Netherlands

EELCO VISSER, Delft University of Technology, Netherlands

Scope graphs are a promising generic framework to model the binding structures of programming languages.
bridging formalization and implementation, supporting the definition of type checkers and the automation
of type safety proofs. However, previous work on scope graphs has been limited to simple, nominal type
systems. In this paper, we show that viewing scopes as types enables us to model the internal structure of
types in a range of non-simple type systems (including structural records and generic classes) using the
generic representation of scopes. Further, we show that relations between such types can be expressed in
terms of generalized scope graph queries. We extend scope graphs with scoped relations and queries. We
introduce Statix, a new domain-specific meta-language for the specification of static semantics, based on scope
graphs and constraints. We evaluate the scopes as types approach and the Statix design in case studies of the
simply-typed lambda calculus with records, System F, and Featherweight Generic Java.

CCS Concepts: « Software and its engineering — Semantics: Domain specific languages:

Additional Key Words and Phrases: static semantics, type system, type checker, name resolution, scope graphs,
domain-specific language

ACM Reference Format:
Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. 2018. Scopes as Types. Proc.
ACM Program. Lang. 2, OOPSLA, Article 114 (November 2018), 30 pages. https://doi.org/10.1145/3276484

1 INTRODUCTION

The goal of our work is to support high-level specification of type systems that can be used for multi-
ple purposes, including reasoning (about type safety among other things) and the implementation of
type checkers [Visser et al. 2014]. Traditional approaches to type system specification do not reflect
the commonality underlying the name binding mechanisms for different languages. Furthermore,
operationalizing name binding in a type checker requires carefully staging the traversals of the
abstract syntax tree in order to collect information before it is needed. In this paper, we introduce
an approach to the declarative specification of type systems that is close in abstraction to traditional
type system specifications, but can be directly interpreted as type checking rules. The approach is
based on scope graphs for name resolution, and constraints to separate traversal order from solving
order.

Authors’ addresses: Hendrik van Antwerpen, Delft University of Technology, Delft, Netherlands, H.vanAntwerpen@tudelft.
nl; Casper Bach Poulsen, Delft University of Technology, Delft, Netherlands, C.B.Poulsen@tudelft.nl; Arjen Rouvoet, Delft
University of Technology, Delft, Netherlands, A.J Rouvoet@tudelft.nl; Eelco Visser, Delft University of Technology, Delft,
Netherlands, E.Visser@tudelft.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART114

https://doi.org/10.1145/3276484

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

https://doi.org/10.1145/3276484

Formalizes the declarative and operational semantics of Statix Core

Introduces concept of critical edges to determine whether a query can be
executed

Extends the type system of Statix with ownership in order to statically
guarantee that critical edges can be computed

OOPSLA 2020

https://do1l.org/10.1145/3428248

Knowing When to Ask

Sound Scheduling of Name Resolution in Type Checkers Derived from Declarative Specifications

ARJEN ROUVOET, Delft University of Technology, The Netherlands

HENDRIK VAN ANTWERPEN, Delft University of Technology, The Netherlands

CASPER BACH POULSEN, Delft University of Technology, The Netherlands

ROBBERT KREBBERS, Radboud University and Delft University of Technology, The Netherlands
EELCO VISSER, Delft University of Technology, The Netherlands

There is a large gap between the specification of type systems and the implementation of their type checkers,
which impedes reasoning about the soundness of the type checker with respect to the specification. A
vision to close this gap is to automatically obtain type checkers from declarative programming language
specifications. This moves the burden of proving correctness from a case-by-case basis for concrete languages
to a single correctness proof for the specification language. This vision is obstructed by an aspect common
to all programming languages: name resolution. Naming and scoping are pervasive and complex aspects
of the static semantics of programming languages. Implementations of type checkers for languages with
name binding features such as modules, imports, classes, and inheritance interleave collection of binding
information (i.e., declarations, scoping structure, and imports) and querying that information. This requires
scheduling those two aspects in such a way that query answers are stable—i.e., they are computed only after
all relevant binding structure has been collected. Type checkers for concrete languages accomplish stability
using language-specific knowledge about the type system.

In this paper we give a language-independent characterization of necessary and sufficient conditions to
guarantee stability of name and type queries during type checking in terms of critical edges in an incomplete
scope graph. We use critical edges to give a formal small-step operational semantics to a declarative specifica-
tion language for type systems, that achieves soundness by delaying queries that may depend on missing
information. This yields type checkers for the specified languages that are sound by construction—i.e., they
schedule queries so that the answers are stable, and only accept programs that are name- and type-correct
according to the declarative language specification. We implement this approach, and evaluate it against
specifications of a small module and record language, as well as subsets of Java and Scala.

CCS Concepts: » Theory of computation — Constraint and logic programming; Operational seman-
tics.

Additional Key Words and Phrases: Name Binding, Type Checker, Statix, Static Semantics, Type Systems

ACM Reference Format:

Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020.
Knowing When to Ask: Sound Scheduling of Name Resolution in Type Checkers Derived from Declarative
Specifications. Proc. ACM Program. Lang. 4, OOPSLA, Article 180 (November 2020), 28 pages. https://doi.org/
10.1145/3428248

Authors’ addresses: Arjen Rouvoet, a.j.rouvoet@tudelft.nl, Delft University of Technology, The Netherlands; Hendrik
van Antwerpen, h.vanantwerpen@tudelft.nl, Delft University of Technology, The Netherlands; Casper Bach Poulsen,
c.b.poulsen@tudelft.nl, Delft University of Technology, The Netherlands; Robbert Krebbers, mail@robbertkrebbers.nl,
Radboud University and Delft University of Technology, The Netherlands; Eelco Visser, e.visser@tudelft.nl, Delft University
of Technology, The Netherlands.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART180
https://doi.org/10.1145/3428248

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 180. Publication date: November 2020.

https://doi.org/10.1145/3428248

Good introduction to unification, which is the basis of many
type inference approaches, constraint languages, and logic
programming languages. Read sections 1, and 2.

Baader et al. “Chapter 8 - Unification Theory.” In Handbook of
Automated Reasoning, 445-533. Amsterdam: North-Holland, 2001.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

CHAPTER 8

Unification theory

Franz Baader

Wayne Snyvder

SECOND READERS: Paliath Narendran, Manfred Schmidt-Schauss, and Klaus

Schulz.
Contents
L Introduction o s e
1.1 What is unification? v v i e
1.2 History and applications 0 0 v i v it e e e e e e e e e e e e
L.3 Approach e
2 Syntactic unifiCation 0 Lt e
2.l DI IOnS . . . L L e
2.2 Unification of 1erms v v i i et e e e e e e e e e e e e e e e e e e e
2.3 Unification of term dags 0 0 i i i e e e e e e e e e e e e e e e e
3 Equational unification L L L L e e e e e e e e e e e e e e e e e
3.1 Basic NOLIONS . . . v v vt e ot ot e e e e s s e e e e e e e e e e e e e e e e e e
T A 1
3.3 Reformulations 0 i v i et e
3.4 Survey of results for specific theories ¢ 0 0 i i i e e e
| Syntac tic methods for F-unifcation v v v v v v e e ot e e e e e e e e e e e e e
1.1 FE-unification in arbitrary theories & o 0 0 i i i e e e e e e
1.2 Restrictions on E-unification in arbitrary theories
S S N 5 11
1.4 Strategies and refinements of basic NaArrowiIng & v v v v v v v e w .
5 Semantic approaches to E-unification 0 0 it i e e e e e e e
5.1 Unification modulo ACU, ACUI, and AG: anexample
5.2 The class of commutative/monoidal theories« v v v v v v v v .
5.3 The corresponding SemMIrINE v v v v v v v v v v ot e e e e e
5.4 Results on unification in commutative theories+« « v v v 4+ « « &
6 Combination of unification algorithms o o v v v e e e e e
6.1 A general combination method 0t n r e e e e e e e e e e e e e e
6.2 Proving correctness of the combination method
T Further Lopics . & o o 0 e
EIDIMETRDERY o 2 ¢ ¢ @ 6 0 6 @ 0 6 6 06 04808080688 aacanasaancssansaas
6 5

HANDBOOK OF AUTOMATED REASONING
Edited by Alan Robinson and Andrei Voronkov
) Elsevier Science Publishers B.V., 2001

163
163
167
169
176
182
182

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Type Checking
with Specifications

Abstract
Syntax
Tree

Source

Code Type Solution/

Editor

Specification Errors

| Language |
independenti‘

L

Typing Rules

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

What are the premises?

- Logical assertions that should hold for well-typed programs

- Specification language determines what assertions can be made
> Type equality and inequality, name resolution, ...

- Determines the expressiveness of the specification!

Solving
- Given an initial predicate that must hold, ...
- find an assignment for all logical variables, such that the predicate is satisfied

Typing Checking

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Separation of computation from program structure
- Typing rules follow the structure of the program
- Solver is flexible in order of resolution

Approach: reusable solver for the specification language
- Support logical variables for unknowns and infer their values
- Automatically determine correct resolution order

10

Constraint Semantics

What gives constraints meaning?

What is the meaning of constraints?
- What is a valid solution?

ty == FUN(tyl,ty2)
Var{x} in s |[-> d
tyl == INTQ)

- Or: In which models are the constraints satisfied?

- Can we describe this independent of an algorithm to find a solution?

When are constraints satisfied?

- Formally described by the declarative semantics
- Writtenas G,p = C
- Satisfied in a model
» Substitution ¢ (read: phi)
> Scope graph G
- Describes for every type of constraint when it is satisfied

12

Semantics of (a Subset of) Statix Constraints

// equality
// name resolution (short for query var .. in s [-> [d])
// conjunction

Declarative semantics

G,0 F 1t ¢Ct) = ¢Cu)

G,d ' 1t o(r) = x
and ¢(d) = X
and ¢(s) = #1
and x resolves to x from #1 1n G

if G, = Ciand G,0 = Co

Using the Semantics

Program Program constraints Unifier ¢ (model)

let tyl == INTQO) é = { tyl -> INTQ),
function f1(12 : 1nt) : 1int = INT() == INTO ty2 -> INTQ),
13 + 1 "1" in #s1 |-> d1 ty3 -> FUNCINTQ),ty5),
in tyZ2 == INTQO) ty4 -> INTQ),
fa(14) "f'" in #s0 |-> d2 dl -> "i",
end ty3 == FUN(ty4,ty5) d2 -> "f"
ty4d == INTQO)

Constraint semantics Scope graph G (model)

G,d t == u
if ¢(t) = ¢(u)

r in s |-> d
1f ¢(r) = x
and ¢(d) = x
and ¢(s) = #1

and x resolves to x from #1 in G

Ci /\ C
1t G, = C;
and G, = C;

Different Kinds of Variables

Program Program constraints Unifier ¢ (model)

let tyl == INTQO) é = { tyl -> INTQ),
function f1(12 : 1nt) : 1int = INT() == INTO ty2 -> INTQ),
13 + 1 "1" in #s1 |-> d1 ty3 -> FUNCINTQ),ty5),
in tyZ2 == INTQO) ty4 -> INTQ),
fa(14) "f'" in #s0 |-> d2 dl -> "i",
end ty3 == FUN(ty4,ty5) d2 -> "f"
ty4d == INTQO)

Constraint semantics Scope graph G (model)

G,d t == u
if ¢(t) = ¢(u)

r in s |-> d
1f ¢(r) = x
and ¢(d) = x
and ¢(s) = #1

and x resolves to x from #1 in G

Ci /\ C
1t G, = C;
and G, = C;

Different Kinds of Variables

Program Program constraints Unifier ¢ (model)

tyl == INT(O) o = { tyl -> INTQ),
f1ion fi(iz @ int) @ int = SENLE) == INTO) tyz -> INTO),
3 i fin #s1 [-> dl ty3 -> FUNCINTQO), ty5),
el tyd -> IN]
£ in #s0 |-> d2 N
ty3 == FUN(ty4,ty5)
ty4d == INT()

Constraint semantics

G,¢

t == u

if ¢(t) = ¢(u)

r in s |-> d

if ¢(r) = x__

and $(s) = #i

and x resolves to x from #1 in G

C: /\ C;
1t G, = C;
and G, = C;

Different Kinds of Variables

Program Program constraints Unifier ¢ (model)

let tyl == INTQ) o = { tyl >
function fi1(i2 : 1int) : INTO) == INTO ty2 ->
13 + 1 "i" in #s1 |-> d1 ty3 ty5h
in ty2 = INTO
fa(14) £ in #sQ |-> d2_ i
end ty3 == FUN(ty4gty5?
fya —= INT

Constraint semantics

A ' variables
if ¢(t) = ¢(u) e

r in s |-> d
1f ¢(r) = x
and ¢(d) = x
and ¢(s) = #1

and x resolves to x from #1 in G

C: /\ C;
1t G, = C;
and G, = C;

Program

Different Kinds of Variables

Program constraints Unifier ¢ (model)

let

tyl == INTQ o = { tyl -> INTQ),

function f1(12 : 1nt) : 1int = INT() == INTO ty2 -> INTQ),

13 + 1
1n
fa(14)
end

Constraint semantics

i

I b(t) = é(u)

rin s [->d

Ci /\ C
1t G, = C;
and G, = C;

"1" 1n #s1 |-> d1 ty3 -> FUNCINTQ),ty5),
ty2 == INTQO) ty4 -> INTQ),

"f" 1n #s0@ |-> d2 dli -> "1",

ty3 == FUN(ty4,ty5) d2 -> "f"

ty4

| Semantics

%#iéin G
A

e —— e e —— ~——

eta-variables |

Type Checking

How to check types?

What should a type checker do?

- Check that a program is well-typed!

- Resolve names, and check or compute types
- Report useful error messages

- Provide a representation of name and type information
» Type annotated AST

This information is used for

- Next compiler steps (optimization, code generation, ...)
- |DE (error reporting, code completion, refactoring, ...)

- Other tools (APl documentation, ...)

How are type checkers implemented?

20

Computing Type of Expression (recap)

function (a : 1nt) =a + 1

typeOfExp(s, Int(_)) = INT(Q).

typeOfExp(s, Plus(el, e2)) = INT(Q) :-
typeOfExp(s, el) == INT(Q),
typeOfExp(s, e2) == INT(Q).
Fun("a", INTQ),

fE - - FUNCS, T) :- {s_f
Plus(Var("a"), Int(1))) typeOfExp(s, Fun(x, te, e)) = FUNCS, T) :- {s_fun}

typeOfTypeExp(s, te) == S,
new s_fun, s_fun -P-> s,

s_fun -> Var{x} with typeOfDecl S,
@ typeOfExp(s_fun, e) == T.
typeOfExp(s, Var(x)) =T :-

typeOfDecl of Var{x} in s |-> [(_, (_, T))].
FUNCINT(C), INTQO))

- Can be executed top down, In premise order
- Could be written almost like this in a functional language

Inferring the Type of a Parameter
' Unknown S!
function (D) = a + 1 e

typeOfExp(s, Int(_)) = INT(Q).

typeOfExp(s, Plus(el, e2)) = INT(Q) :-
typeOfExp(s, el) == INT(Q),
typeOfExp(s, e2) == INT(Q).

’ typeOfE , F , = FUN(S,?
Plus(Var("a"), Int(1))) ypeOTEXp(s, Fun(x e)) i

new s_fun, s_fun -P-> s, o
s_fun -> Var{x} with typeOFDecléS_;
@ typeOfExp(s_fun, e) == T. a

typeOfExp(s, Var(x)) =T :-
typeOfDecl of Var{x} in s |-> [(_, (_, T))].
FUNCINT(C), INTQO))

- What are the conseqguences for our typing rules?
- Types are not known from the start, but learned gradually
- A simple top-down traversal is insufficient

class A {
B m() {

}
;

return new C();

class B {
int 1;

¥

class C extends B {
int m(A a) {

}

return a.m() .1;

Checking classes

How can we type check this program?

- |s there a possible single traversal strategy here”
- Why are the type annotations not enough®
- What strategy could be used?

Two-pass approach
- The first pass builds a class table

- The second pass checks expressions using the
class table

Question

- Does this still work if we introduce nested
classes?

Variables and Constraints

function () =a + 1

typeOfExp(s, Int(_)) = INT(Q).

@ typeOfExp(s, Plus(el, e2)) = INT(Q) :-
typeOfExp(s, el) == INT(Q),
typeOfExp(s, e2) == INT(Q).

FunCa" , R

Plus(Var("a"™), Int(1))) typeOfExp(s, Fun(x, . e)) = FUNCS,| T :- {s_fun}

new s_fun, s_fun -P-> s,

s_fun -> Var{x} with typeOfDecl S,

typeOfExp(s_fun, e) == T.
typeOfExp(s, Var(x)) =T :-

¢,f INTO) =4 7S == INTO) typeOfDecl of Var{x} in s I-> [(_, (_, T))].

Vv

?S = INTQ)

How to check types?

What are challenges when implementing a type checker?
- Collecting necessary binding information before using it
- Gradually learning type information

What are the consequences of these challenges?

- The order of computation needs to be more flexible than the AST
traversal

- Support explicit logical variables during solving

25

Solving Constraints

Solving by Rewriting

Constraint
{

{
Solution

Solving by Rewriting

Non-deterministic |
constraint selection |

<C; G, ¢> — <C; G, ¢>

H C; G’ @> N <C; G’ ¢'> where UnifYC@,'t,U) = @I

<sl -L— s2, C; G, & — <C; G', &> where ®(sl) = #i, #(s2) = #7,
G + {#i -L—> #j} = G

<r ins+— t, C; G, ¢ — <t = d, C; G, &> where $(r) = X, @Eé) = #i,
resolve(G, #i,|x) = d

def solve(C):

if <C; {}, {}> —* <{}; G, ¢>: Sberh and

name resolution

algorithm don't have |
to know about logical |
'variables |

return <G, ¢>
else:
fail

Solving by Rewriting

Solver = rewrite system
- Rewrite a constraint set + solution
- Simplifying and eliminating constraints
» Constraint selecting is non-deterministic
> Resolution order is controlled by side conditions on rewrite rules

- Rely on (other) solvers and algorithms for base cases
> Unification for term equality
> Scope graph resolution

- The solution Is final If all constraints are eliminated

Does the order matter for the outcome?
- Confluence: the output is the same for any solving order

- Partly true for Statix
» Up to variable and scope names
> Only if all constraints are reduced

Semantics vs Algorithm

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

How are these related?

- Soundness
> |f the solver returns <G, ¢>, then G,p = C

- Completeness:
> |f a G and ¢ exists such that G,¢p = C, then the solver returns it

> If no such G or ¢ exists, the solver fails
- Principality
> The solver finds the most general ¢

30

Term Equality
& Unification

Syntactic Terms

Generic Terms fmctions £ ot

function symbol | arguments |

INT(O)
FUNCINT(C),INT())

Syntactic Equality

f(te,..,tn) == g(ue,..,un) 1f
- f =g, and n =m
- ti == ui for every 1

Variables and Substitution

variable | substitution |
‘] r - 7]

0 = {a_> f@O,b), b > hO }

¢Ca)
¢Ca)
¢(f(to,..,tn))

FC9(),t(g(),b))

ground term:

terms

functions
variables
substitution

if {a->t?}in ¢

otherwise

((I)(t@) 9 *e*) ¢<tn))

a term without variables

Unifiers terms

functions

variables
substitution

unifier: a substitution that makes terms equal

== f(hQ),b)

g(a, f(b)) == g(f(h()),a) a -> f(h()) [:{:>> g(F(h0), FChOD) == g(F(hO),FhOD)

fCa,h()) == g(h(Q),b)

f(b,b) ==

Most General Unifiers

functions
variables
substitution

f(g(),90)) == f(g(),9())
* * f(b,b) == f(b,b)

I b -> a
most general * f(a,a) == f(a,a)
- unifiers |

fCa,b) == f(b,c)

Most General Unifiers

every unifier 1s an instance of a most general unifier

terms
functions
variables
substitution

Unification

lobal
g . (I) terms t, u
def uni fy(t, U) . functions f, g, h
. . . J— variables a, b, c
1f t 1s a variable: Ct==a substitution &
t = o(t) | instantiate variable

if u is a variable: T u==
u := ¢(u) | Iinstantiate variable

if t is a variable and t == u: b ==
pass 1 equal variables

else if t == f(tl,...,tn) and u == g(ul)-.-)um):ﬁ

if f == g and n == m: |t ==f(t1,...,t5), U == f(us,...,us)
for i := 1 to n: matching terms
unify(ti, ui)
else: 1 t==fo,...ts), u == g(uo,...,us)
fail "different function symbols" J. mismatching terms
else if t is not a variable: | t==Ato,...,ts), u ==
unify(u, t)] swap terms
else if t occurs 1in u: T t==a, u==kg(a))

fail "recursive term" 1 recursive terms
else: | t==a, u==kKuo,...,us
® += { t -> u } 4. extend unifier

Properties of Unification

Soundness
- |f the algorithm returns a unifier, it makes the terms equal

Completeness
- If a unifier exists, the algorithm will return it

Principality
- |f the algorithm returns a unifier, it is a most general unifier

Termination
- The algorithm always returns a unifier or fails

38

Efficient Unification
with Union-Find

Complexity of Unification

Space complexity Functions

variables

— EXpOnentla‘ substitution L

- Representation of unifier

h(ax s ey On , T(bo,bo), .., f(bn-1,bn-1), an) ==
h('F(CIQ,CIQD, ...,fcan—l,an—l), bl, e g bn—l y bn)

Time complexity
- Exponential
- Recursive calls on terms

a1 -> f(ae,ae) a1 -> f(ae,ae)

SOIUtiOn a; —> f(f(ae,a0), f(ae,aqs)) a; -> f(ai,a1)

ai -> .. 2i1*1-1 subterms .. ai -> .. 3 subterms ..

- : - b1 -> f(de,ae) bi1 -> f(ae,de)
- Union-Find algorithm bo -> f(f(ao,a0), F(do,a0)) b, -> f(ar,a1)

: bi -> .. 2i+1-1 subterms .. bi -> .. 3 subterms ..
- Complexity growth can be
considered constant

fully applied | triangular

Set Representatives

FINDCa): & representative |
b := rep(a) - -
1f b == a:

return a
else

return FIND(b)

UNIONCal,a2):
p1 := FIND(Cal)
n?2 := FIND(a2)
LINK(b1,b2)

LINKCal,a2):
rep(al) := a’Z

FIND(Ca):
b := rep(a)
1f b == a:
return d

else
return FIND(b)

UNION(al,a2):
pl := FIND(al)
n?2 := FIND(Ca2)
LINK(b1,b2)

LINKCal,a2):
rep(al) := a’Z

Path Compression

FIND(Ca):

b := rep(a)

1f b == a:
return d

else
b := FIND(b)
rep(a) :=b
return b

UNION(al,a2):
pl := FIND(al)
n?2 := FIND(Ca2)
LINK(b1,b2)

LINKCal,a2):
rep(al) := a’Z

Tree Balancing

The Complex Case

9 'F(b@ 9 b@) 9
b |

e g FCbn—l,bn—l), an) —
s 9 bn—]_ ’ bn>

dn

'F(an—l,an—l)

'F(an—Z) Cln—Z)

'F(an—l, An-1)

fcbn—Z y bn—Z)

'F(bn—l ’ bn—l)

]

How about occurrence checks? Postpone! |

Union-Find

Ta N Martelli, Montanari. An Efficient
Maln Idea Unification Algorithm. TOPLAS, 1982

- Represent unifier as graph

- One variable represent equivalence class

- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations
- Path compression make recurring lookups fast
- Tree balancing keeps paths short

Complexity

- Linear in space and almost linear (inverse Ackermann) in time

- Easy to extract triangular unifier from graph

- Postpone occurrence checks to prevent traversing (potentially) large terms

45

Conclusion

Summary

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories

» Syntactic equality

» Scope graph resolution

What techniques can we use to implement solvers?

- Constraint simplification
» Simplification rules
> Depends on built-in procedures to unify or resolve names

- Unification
» Unifiers make terms with variables equal
> Unification computes most general unifiers

What is the relation between solver and semantics?
- Soundness: any solution satisfies the semantics

- Completeness: if a solution exists, the solver finds it

- Principality: the solver computes most general solutions

47

Except where otherwise noted, this work is licensed under

()

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

