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Reading Material

The following papers add background, conceptual exposition, and examples to the material from
the slides. Some notation and technical details have been changed; check the documentation.



This paper introduces the Statix DSL for definition of type systems.
Shows how to use scope graphs for structural type and generic types

Explains the need for scheduling in type checkers

OOPSLA 2018

https://dol.org/10.1145/3276484
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Scope graphs are a promising generic framework to model the binding structures of programming languages.
bridging formalization and implementation, supporting the definition of type checkers and the automation
of type safety proofs. However, previous work on scope graphs has been limited to simple, nominal type
systems. In this paper, we show that viewing scopes as types enables us to model the internal structure of
types in a range of non-simple type systems (including structural records and generic classes) using the
generic representation of scopes. Further, we show that relations between such types can be expressed in
terms of generalized scope graph queries. We extend scope graphs with scoped relations and queries. We
introduce Statix, a new domain-specific meta-language for the specification of static semantics, based on scope
graphs and constraints. We evaluate the scopes as types approach and the Statix design in case studies of the
simply-typed lambda calculus with records, System F, and Featherweight Generic Java.

CCS Concepts: « Software and its engineering — Semantics: Domain specific languages:

Additional Key Words and Phrases: static semantics, type system, type checker, name resolution, scope graphs,
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1 INTRODUCTION

The goal of our work is to support high-level specification of type systems that can be used for multi-
ple purposes, including reasoning (about type safety among other things) and the implementation of
type checkers [Visser et al. 2014]. Traditional approaches to type system specification do not reflect
the commonality underlying the name binding mechanisms for different languages. Furthermore,
operationalizing name binding in a type checker requires carefully staging the traversals of the
abstract syntax tree in order to collect information before it is needed. In this paper, we introduce
an approach to the declarative specification of type systems that is close in abstraction to traditional
type system specifications, but can be directly interpreted as type checking rules. The approach is
based on scope graphs for name resolution, and constraints to separate traversal order from solving
order.
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Formalizes the declarative and operational semantics of Statix Core

Introduces concept of critical edges to determine whether a query can be
executed

Extends the type system of Statix with ownership in order to statically
guarantee that critical edges can be computed

OOPSLA 2020

https://do1l.org/10.1145/3428248

Knowing When to Ask

Sound Scheduling of Name Resolution in Type Checkers Derived from Declarative Specifications
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There is a large gap between the specification of type systems and the implementation of their type checkers,
which impedes reasoning about the soundness of the type checker with respect to the specification. A
vision to close this gap is to automatically obtain type checkers from declarative programming language
specifications. This moves the burden of proving correctness from a case-by-case basis for concrete languages
to a single correctness proof for the specification language. This vision is obstructed by an aspect common
to all programming languages: name resolution. Naming and scoping are pervasive and complex aspects
of the static semantics of programming languages. Implementations of type checkers for languages with
name binding features such as modules, imports, classes, and inheritance interleave collection of binding
information (i.e., declarations, scoping structure, and imports) and querying that information. This requires
scheduling those two aspects in such a way that query answers are stable—i.e., they are computed only after
all relevant binding structure has been collected. Type checkers for concrete languages accomplish stability
using language-specific knowledge about the type system.

In this paper we give a language-independent characterization of necessary and sufficient conditions to
guarantee stability of name and type queries during type checking in terms of critical edges in an incomplete
scope graph. We use critical edges to give a formal small-step operational semantics to a declarative specifica-
tion language for type systems, that achieves soundness by delaying queries that may depend on missing
information. This yields type checkers for the specified languages that are sound by construction—i.e., they
schedule queries so that the answers are stable, and only accept programs that are name- and type-correct
according to the declarative language specification. We implement this approach, and evaluate it against
specifications of a small module and record language, as well as subsets of Java and Scala.
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Good introduction to unification, which is the basis of many
type inference approaches, constraint languages, and logic
programming languages. Read sections 1, and 2.

Baader et al. “Chapter 8 - Unification Theory.” In Handbook of
Automated Reasoning, 445-533. Amsterdam: North-Holland, 2001.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

CHAPTER 8

Unification theory

Franz Baader

Wayne Snyvder
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Typing Rules

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)
- Syntax-directed, match on program constructs (at least in Statix)
- Specification of what it means to be well-typed!

What are the premises?

- Logical assertions that should hold for well-typed programs

- Specification language determines what assertions can be made
> Type equality and inequality, name resolution, ...

- Determines the expressiveness of the specification!

Solving
- Given an initial predicate that must hold, ...
- find an assignment for all logical variables, such that the predicate is satisfied



Typing Checking

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use
- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program
- Solver says how to determine that a program is well-typed

Separation of computation from program structure
- Typing rules follow the structure of the program
- Solver is flexible in order of resolution

Approach: reusable solver for the specification language
- Support logical variables for unknowns and infer their values
- Automatically determine correct resolution order

10



Constraint Semantics




What gives constraints meaning?

What is the meaning of constraints?
- What is a valid solution?

ty == FUN(tyl,ty2)
Var{x} in s |[-> d
tyl == INTQ)

- Or: In which models are the constraints satisfied?

- Can we describe this independent of an algorithm to find a solution?

When are constraints satisfied?

- Formally described by the declarative semantics
- Writtenas G,p = C
- Satisfied in a model
» Substitution ¢ (read: phi)
> Scope graph G
- Describes for every type of constraint when it is satisfied

12



Semantics of (a Subset of) Statix Constraints

// equality
// name resolution (short for query var .. in s [-> [d])
// conjunction

Declarative semantics

G,0 F 1t ¢Ct) = ¢Cu)

G,d ' 1t o(r) = x
and ¢(d) = X
and ¢(s) = #1
and x resolves to x from #1 1n G

if G, = Ciand G,0 = Co




Using the Semantics

Program Program constraints Unifier ¢ (model)

let tyl == INTQO) é = { tyl -> INTQ),
function f1(12 : 1nt) : 1int = INT() == INTO ty2 -> INTQ),
13 + 1 "1" in #s1 |-> d1 ty3 -> FUNCINTQ),ty5),
in tyZ2 == INTQO) ty4 -> INTQ),
fa(14) "f'" in #s0 |-> d2 dl -> "i",
end ty3 == FUN(ty4,ty5) d2 -> "f"
ty4d == INTQO)

Constraint semantics Scope graph G (model)

G,d t == u
if ¢(t) = ¢(u)

r in s |-> d
1f ¢(r) = x
and ¢(d) = x
and ¢(s) = #1

and x resolves to x from #1 in G

Ci /\ C
1t G, = C;
and G, = C;




Different Kinds of Variables

Program Program constraints Unifier ¢ (model)

let tyl == INTQO) é = { tyl -> INTQ),
function f1(12 : 1nt) : 1int = INT() == INTO ty2 -> INTQ),
13 + 1 "1" in #s1 |-> d1 ty3 -> FUNCINTQ),ty5),
in tyZ2 == INTQO) ty4 -> INTQ),
fa(14) "f'" in #s0 |-> d2 dl -> "i",
end ty3 == FUN(ty4,ty5) d2 -> "f"
ty4d == INTQO)

Constraint semantics Scope graph G (model)

G,d t == u
if ¢(t) = ¢(u)

r in s |-> d
1f ¢(r) = x
and ¢(d) = x
and ¢(s) = #1

and x resolves to x from #1 in G

Ci /\ C
1t G, = C;
and G, = C;




Different Kinds of Variables

Program Program constraints Unifier ¢ (model)

tyl == INT(O) o = { tyl -> INTQ),
f1ion fi(iz @ int) @ int = SENLE) == INTO) tyz -> INTO),
3 i fin #s1 [-> dl ty3 -> FUNCINTQO), ty5),
el tyd -> IN]
£ in #s0 |-> d2 N
ty3 == FUN(ty4,ty5)
ty4d == INT()

Constraint semantics

G,¢

t == u

if ¢(t) = ¢(u)

r in s |-> d

if ¢(r) = x__

and $(s) = #i

and x resolves to x from #1 in G

C: /\ C;
1t G, = C;
and G, = C;



Different Kinds of Variables

Program Program constraints Unifier ¢ (model)

let tyl == INTQ) o = { tyl >
function fi1(i2 : 1int) : INTO) == INTO ty2 ->
13 + 1 "i" in #s1 |-> d1 ty3 ty5h
in ty2 = INTO
fa(14) £ in #sQ |-> d2_ i
end ty3 == FUN(ty4gty5?
fya —= INT

Constraint semantics

A ' variables
if ¢(t) = ¢(u) e

r in s |-> d
1f ¢(r) = x
and ¢(d) = x
and ¢(s) = #1

and x resolves to x from #1 in G

C: /\ C;
1t G, = C;
and G, = C;




Program

Different Kinds of Variables

Program constraints Unifier ¢ (model)

let

tyl == INTQ o = { tyl -> INTQ),

function f1(12 : 1nt) : 1int = INT() == INTO ty2 -> INTQ),

13 + 1
1n
fa(14)
end

Constraint semantics

i

I b(t) = é(u)

rin s [->d

Ci /\ C
1t G, = C;
and G, = C;

"1" 1n #s1 |-> d1 ty3 -> FUNCINTQ),ty5),
ty2 == INTQO) ty4 -> INTQ),

"f" 1n #s0@ |-> d2 dli -> "1",

ty3 == FUN(ty4,ty5) d2 -> "f"

ty4

| Semantics

%#iéin G
A

e —— e e —— ~——

eta-variables |




Type Checking




How to check types?

What should a type checker do?

- Check that a program is well-typed!

- Resolve names, and check or compute types
- Report useful error messages

- Provide a representation of name and type information
» Type annotated AST

This information is used for

- Next compiler steps (optimization, code generation, ...)
- |DE (error reporting, code completion, refactoring, ...)

- Other tools (APl documentation, ...)

How are type checkers implemented?

20



Computing Type of Expression (recap)

function (a : 1nt) =a + 1

typeOfExp(s, Int(_)) = INT(Q).

typeOfExp(s, Plus(el, e2)) = INT(Q) :-
typeOfExp(s, el) == INT(Q),
typeOfExp(s, e2) == INT(Q).
Fun("a", INTQ),

fE - - FUNCS, T) :- {s_f
Plus(Var("a"), Int(1))) typeOfExp(s, Fun(x, te, e)) = FUNCS, T) :- {s_fun}

typeOfTypeExp(s, te) == S,
new s_fun, s_fun -P-> s,

s_fun -> Var{x} with typeOfDecl S,
@ typeOfExp(s_fun, e) == T.
typeOfExp(s, Var(x)) =T :-

typeOfDecl of Var{x} in s |-> [(_, (_, T))].
FUNCINT(C), INTQO))

- Can be executed top down, In premise order
- Could be written almost like this in a functional language




Inferring the Type of a Parameter
' Unknown S!
function (D) = a + 1 e

typeOfExp(s, Int(_)) = INT(Q).

typeOfExp(s, Plus(el, e2)) = INT(Q) :-
typeOfExp(s, el) == INT(Q),
typeOfExp(s, e2) == INT(Q).

’ typeOfE , F , = FUN(S,?
Plus(Var("a"), Int(1))) ypeOTEXp(s, Fun(x e)) i

new s_fun, s_fun -P-> s, o
s_fun -> Var{x} with typeOFDecléS_;
@ typeOfExp(s_fun, e) == T. a

typeOfExp(s, Var(x)) =T :-
typeOfDecl of Var{x} in s |-> [(_, (_, T))].
FUNCINT(C), INTQO))

- What are the conseqguences for our typing rules?
- Types are not known from the start, but learned gradually
- A simple top-down traversal is insufficient




class A {
B m() {

}
;

return new C();

class B {
int 1;

¥

class C extends B {
int m(A a) {

}

return a.m() .1;

Checking classes

How can we type check this program?

- |s there a possible single traversal strategy here”
- Why are the type annotations not enough®
- What strategy could be used?

Two-pass approach
- The first pass builds a class table

- The second pass checks expressions using the
class table

Question

- Does this still work if we introduce nested
classes?




Variables and Constraints

function () =a + 1

typeOfExp(s, Int(_)) = INT(Q).

@ typeOfExp(s, Plus(el, e2)) = INT(Q) :-
typeOfExp(s, el) == INT(Q),
typeOfExp(s, e2) == INT(Q).

FunCa" , R

Plus(Var("a"™), Int(1))) typeOfExp(s, Fun(x, . e)) = FUNCS,| T :- {s_fun}

new s_fun, s_fun -P-> s,

s_fun -> Var{x} with typeOfDecl S,

typeOfExp(s_fun, e) == T.
typeOfExp(s, Var(x)) =T :-

¢,f INTO) =4 7S == INTO) typeOfDecl of Var{x} in s I-> [(_, (_, T))].

Vv

?S = INTQ)




How to check types?

What are challenges when implementing a type checker?
- Collecting necessary binding information before using it
- Gradually learning type information

What are the consequences of these challenges?

- The order of computation needs to be more flexible than the AST
traversal

- Support explicit logical variables during solving

25



Solving Constraints




Solving by Rewriting

Constraint
{

{
Solution




Solving by Rewriting

Non-deterministic |
constraint selection |

<C; G, ¢> — <C; G, ¢>

H C; G’ @> N <C; G’ ¢'> where UnifYC@,'t,U) = @I

<sl -L— s2, C; G, & — <C; G', &> where ®(sl) = #i, #(s2) = #7,
G + {#i -L—> #j} = G

<r ins+— t, C; G, ¢ — <t = d, C; G, &> where $(r) = X, @Eé) = #i,
resolve(G, #i,|x) = d

def solve(C):

if <C; {}, {}> —* <{}; G, ¢>: Sberh and

name resolution

algorithm don't have |
to know about logical |
'variables |

return <G, ¢>
else:
fail




Solving by Rewriting

Solver = rewrite system
- Rewrite a constraint set + solution
- Simplifying and eliminating constraints
» Constraint selecting is non-deterministic
> Resolution order is controlled by side conditions on rewrite rules

- Rely on (other) solvers and algorithms for base cases
> Unification for term equality
> Scope graph resolution

- The solution Is final If all constraints are eliminated

Does the order matter for the outcome?
- Confluence: the output is the same for any solving order

- Partly true for Statix
» Up to variable and scope names
> Only if all constraints are reduced



Semantics vs Algorithm

What is the difference?

- Algorithm computes a solution (= model)
- Semantics describes when a constraint is satisfied by a model

How are these related?

- Soundness
> |f the solver returns <G, ¢>, then G,p = C

- Completeness:
> |f a G and ¢ exists such that G,¢p = C, then the solver returns it

> If no such G or ¢ exists, the solver fails
- Principality
> The solver finds the most general ¢

30



Term Equality
& Unification




Syntactic Terms

Generic Terms fmctions £ ot

function symbol | arguments |

INT(O)
FUNCINT(C),INT())

Syntactic Equality

f(te,..,tn) == g(ue,..,un) 1f
- f =g, and n =m
- ti == ui for every 1




Variables and Substitution

variable | substitution |
‘ ] r - 7 ]

0 = {a_> f@O,b), b > hO }

¢Ca)
¢Ca)
¢(f(to,..,tn))

FC9(),t(g(),b))

ground term:

terms

functions
variables
substitution

if {a->t?}in ¢

otherwise

((I)(t@) 9 *e*) ¢<tn))

a term without variables



Unifiers terms

functions

variables
substitution

unifier: a substitution that makes terms equal

== f(hQ),b)

g(a, f(b)) == g(f(h()),a) a -> f(h()) [:{:>> g(F(h0), FChOD) == g(F(hO),FhOD)

fCa,h()) == g(h(Q),b)

f(b,b) ==




Most General Unifiers

functions
variables
substitution

f(g(),90)) == f(g(),9())
* * f(b,b) == f(b,b)

I b -> a
most general * f(a,a) == f(a,a)
- unifiers |

fCa,b) == f(b,c)




Most General Unifiers

every unifier 1s an instance of a most general unifier

terms
functions
variables
substitution



Unification

lobal
g . (I) terms t, u
def uni fy(t, U) . functions f, g, h
. . . J— variables a, b, c
1f t 1s a variable: Ct==a substitution &
t = o(t) | instantiate variable

if u is a variable: T u==
u := ¢(u) | Iinstantiate variable

if t is a variable and t == u: b ==
pass 1 equal variables

else if t == f(tl,...,tn) and u == g(ul)-.-)um):ﬁ

if f == g and n == m: |t ==f(t1,...,t5), U == f(us,...,us)
for i := 1 to n: matching terms
unify(ti, ui)
else: 1 t==fo,...ts), u == g(uo,...,us)
fail "different function symbols" J. mismatching terms
else if t is not a variable: | t==Ato,...,ts), u ==
unify(u, t) ] swap terms
else if t occurs 1in u: T t==a, u==kg(a))

fail "recursive term" 1 recursive terms
else: | t==a, u==kKuo,...,us
® += { t -> u } 4. extend unifier




Properties of Unification

Soundness
- |f the algorithm returns a unifier, it makes the terms equal

Completeness
- If a unifier exists, the algorithm will return it

Principality
- |f the algorithm returns a unifier, it is a most general unifier

Termination
- The algorithm always returns a unifier or fails

38



Efficient Unification
with Union-Find



Complexity of Unification

Space complexity Functions

variables

— EXpOnentla‘ substitution L

- Representation of unifier

h(ax s ey On , T(bo,bo), .., f(bn-1,bn-1), an) ==
h('F(CIQ,CIQD, ...,fcan—l,an—l), bl, e g bn—l y bn)

Time complexity
- Exponential
- Recursive calls on terms

a1 -> f(ae,ae) a1 -> f(ae,ae)

SOIUtiOn a; —> f(f(ae,a0), f(ae,aqs)) a; -> f(ai,a1)

ai -> .. 2i1*1-1 subterms .. ai -> .. 3 subterms ..

- : - b1 -> f(de,ae) bi1 -> f(ae,de)
- Union-Find algorithm bo -> f(f(ao,a0), F(do,a0)) b, -> f(ar,a1)

: bi -> .. 2i+1-1 subterms .. bi -> .. 3 subterms ..
- Complexity growth can be
considered constant

fully applied | triangular



Set Representatives

FINDCa): & representative |
b := rep(a) - -
1f b == a:

return a
else

return FIND(b)

UNIONCal,a2):
p1 := FIND(Cal)
n?2 := FIND(a2)
LINK(b1,b2)

LINKCal,a2):
rep(al) := a’Z




FIND(Ca):
b := rep(a)
1f b == a:
return d

else
return FIND(b)

UNION(al,a2):
pl := FIND(al)
n?2 := FIND(Ca2)
LINK(b1,b2)

LINKCal,a2):
rep(al) := a’Z

Path Compression




FIND(Ca):

b := rep(a)

1f b == a:
return d

else
b := FIND(b)
rep(a) :=b
return b

UNION(al,a2):
pl := FIND(al)
n?2 := FIND(Ca2)
LINK(b1,b2)

LINKCal,a2):
rep(al) := a’Z

Tree Balancing




The Complex Case

9 'F(b@ 9 b@) 9
b |

e g FCbn—l,bn—l), an) —
s 9 bn—]_ ’ bn>

dn

'F(an—l,an—l)

'F(an—Z ) Cln—Z)

'F(an—l, An-1)

fcbn—Z y bn—Z)

'F(bn—l ’ bn—l)

]

How about occurrence checks? Postpone! |




Union-Find

Ta N Martelli, Montanari. An Efficient
Maln Idea Unification Algorithm. TOPLAS, 1982

- Represent unifier as graph

- One variable represent equivalence class

- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations
- Path compression make recurring lookups fast
- Tree balancing keeps paths short

Complexity

- Linear in space and almost linear (inverse Ackermann) in time

- Easy to extract triangular unifier from graph

- Postpone occurrence checks to prevent traversing (potentially) large terms
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Conclusion



Summary

What is the meaning of constraints?

- Formally described by constraint semantics
- Semantics classifies solutions, but do not compute them
- Semantics is expressed in terms of other theories

» Syntactic equality

» Scope graph resolution

What techniques can we use to implement solvers?

- Constraint simplification
» Simplification rules
> Depends on built-in procedures to unify or resolve names

- Unification
» Unifiers make terms with variables equal
> Unification computes most general unifiers

What is the relation between solver and semantics?
- Soundness: any solution satisfies the semantics

- Completeness: if a solution exists, the solver finds it

- Principality: the solver computes most general solutions
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