
Constraint Semantics and Constraint Resolution

CS4200 | Compiler Construction | September 30, 2021

Hendrik van Antwerpen

Eelco Visser

This lecture

Source

Code

Editor

Abstract

Syntax

Tree

Solution/
Errors

Type

Specification

SolveParse +

- Type checking with type specifications

- Semantics of a type specification

- Type checking algorithms

- Constraint solving for type specifications

- Term equality and unification

Reading Material

The following papers add background, conceptual exposition, and examples to the material from
the slides. Some notation and technical details have been changed; check the documentation.

4

This paper introduces the Statix DSL for definition of type systems.

Shows how to use scope graphs for structural type and generic types

Explains the need for scheduling in type checkers

OOPSLA 2018

https://doi.org/10.1145/3276484

https://doi.org/10.1145/3276484

180

Knowing When to Ask
Sound Scheduling of Name Resolution in Type Checkers Derived from Declarative Specifications

ARJEN ROUVOET, Delft University of Technology, The Netherlands

HENDRIK VAN ANTWERPEN, Delft University of Technology, The Netherlands

CASPER BACH POULSEN, Delft University of Technology, The Netherlands

ROBBERT KREBBERS, Radboud University and Delft University of Technology, The Netherlands

EELCO VISSER, Delft University of Technology, The Netherlands

There is a large gap between the speci!cation of type systems and the implementation of their type checkers,
which impedes reasoning about the soundness of the type checker with respect to the speci!cation. A
vision to close this gap is to automatically obtain type checkers from declarative programming language
speci!cations. This moves the burden of proving correctness from a case-by-case basis for concrete languages
to a single correctness proof for the speci!cation language. This vision is obstructed by an aspect common
to all programming languages: name resolution. Naming and scoping are pervasive and complex aspects
of the static semantics of programming languages. Implementations of type checkers for languages with
name binding features such as modules, imports, classes, and inheritance interleave collection of binding
information (i.e., declarations, scoping structure, and imports) and querying that information. This requires
scheduling those two aspects in such a way that query answers are stable—i.e., they are computed only after
all relevant binding structure has been collected. Type checkers for concrete languages accomplish stability
using language-speci!c knowledge about the type system.

In this paper we give a language-independent characterization of necessary and su"cient conditions to
guarantee stability of name and type queries during type checking in terms of critical edges in an incomplete
scope graph. We use critical edges to give a formal small-step operational semantics to a declarative speci!ca-
tion language for type systems, that achieves soundness by delaying queries that may depend on missing
information. This yields type checkers for the speci!ed languages that are sound by construction—i.e., they
schedule queries so that the answers are stable, and only accept programs that are name- and type-correct
according to the declarative language speci!cation. We implement this approach, and evaluate it against
speci!cations of a small module and record language, as well as subsets of Java and Scala.

CCS Concepts: • Theory of computation→ Constraint and logic programming; Operational seman-
tics.

Additional Key Words and Phrases: Name Binding, Type Checker, Statix, Static Semantics, Type Systems

ACM Reference Format:
Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020.
Knowing When to Ask: Sound Scheduling of Name Resolution in Type Checkers Derived from Declarative
Speci!cations. Proc. ACM Program. Lang. 4, OOPSLA, Article 180 (November 2020), 28 pages. https://doi.org/
10.1145/3428248

Authors’ addresses: Arjen Rouvoet, a.j.rouvoet@tudelft.nl, Delft University of Technology, The Netherlands; Hendrik
van Antwerpen, h.vanantwerpen@tudelft.nl, Delft University of Technology, The Netherlands; Casper Bach Poulsen,
c.b.poulsen@tudelft.nl, Delft University of Technology, The Netherlands; Robbert Krebbers, mail@robbertkrebbers.nl,
Radboud University and Delft University of Technology, The Netherlands; Eelco Visser, e.visser@tudelft.nl, Delft University
of Technology, The Netherlands.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART180
https://doi.org/10.1145/3428248

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 180. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Formalizes the declarative and operational semantics of Statix Core

Introduces concept of critical edges to determine whether a query can be
executed

Extends the type system of Statix with ownership in order to statically
guarantee that critical edges can be computed

OOPSLA 2020

https://doi.org/10.1145/3428248

https://doi.org/10.1145/3428248

6

Good introduction to unification, which is the basis of many
type inference approaches, constraint languages, and logic
programming languages. Read sections 1, and 2.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Baader et al. “Chapter 8 - Unification Theory.” In Handbook of
Automated Reasoning, 445–533. Amsterdam: North-Holland, 2001.

https://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Type Checking

with Specifications

Source

Code

Editor

Abstract

Syntax

Tree

Solution/
Errors

Type

Specification

Solve

language specific language

independent

Parse +

8

What are typing rules?

- Predicates that specify constraints (rule premises) on their arguments (the program)

- Syntax-directed, match on program constructs (at least in Statix)

- Specification of what it means to be well-typed!

What are the premises?

- Logical assertions that should hold for well-typed programs

- Specification language determines what assertions can be made

‣ Type equality and inequality, name resolution, ...

- Determines the expressiveness of the specification!

Solving

- Given an initial predicate that must hold, ...

- find an assignment for all logical variables, such that the predicate is satisfied

9

Typing Rules

Challenges for type checker implementations?

- Collecting (non-lexical) binding information before use

- Dealing with unknown (type) values

Separation of what from how

- Typing rules says what is a well-typed program

- Solver says how to determine that a program is well-typed

Separation of computation from program structure

- Typing rules follow the structure of the program

- Solver is flexible in order of resolution

Approach: reusable solver for the specification language

- Support logical variables for unknowns and infer their values

- Automatically determine correct resolution order

10

Typing Checking

Constraint Semantics

What is the meaning of constraints?

- What is a valid solution?

- Or: in which models are the constraints satisfied?

- Can we describe this independent of an algorithm to find a solution?

When are constraints satisfied?

- Formally described by the declarative semantics

- Written as G,ɸ ⊨ C

- Satisfied in a model

‣ Substitution ɸ (read: phi)

‣ Scope graph G

- Describes for every type of constraint when it is satisfied
12

What gives constraints meaning?

ty == FUN(ty1,ty2)  
Var{x} in s |-> d

ty1 == INT()

Semantics of (a Subset of) Statix Constraints

C = t == t // equality

 | r in s |-> d // name resolution (short for query var … in s |-> [d])

 | C /\ C // conjunction

G,ɸ ⊨ t == u

G,ɸ ⊨ r in s |-> d

G,ɸ ⊨ C1 /\ C2

if ɸ(t) = ɸ(u)

if ɸ(r) = x

and ɸ(d) = x

and ɸ(s) = #i

and x resolves to x from #i in G

if G,ɸ ⊨ C1 and G,ɸ ⊨ C2

Syntax

Declarative semantics

Using the Semantics

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

 ty2 -> INT(),

 ty3 -> FUN(INT(),ty5),

 ty4 -> INT(),

 d1 -> "i",

 d2 -> "f"

 }

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Program Program constraints Unifier ɸ (model)

Scope graph G (model)Constraint semantics

Different Kinds of Variables

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

 ty2 -> INT(),

 ty3 -> FUN(INT(),ty5),

 ty4 -> INT(),

 d1 -> "i",

 d2 -> "f"

 }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)

Different Kinds of Variables

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

 ty2 -> INT(),

 ty3 -> FUN(INT(),ty5),

 ty4 -> INT(),

 d1 -> "i",

 d2 -> "f"

 }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Object language
variables

Different Kinds of Variables

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

 ty2 -> INT(),

 ty3 -> FUN(INT(),ty5),

 ty4 -> INT(),

 d1 -> "i",

 d2 -> "f"

 }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Constraint / logic
variables

Different Kinds of Variables

G,ɸ ⊨ t == u

 if ɸ(t) = ɸ(u)

G,ɸ ⊨ r in s |-> d

 if ɸ(r) = x

 and ɸ(d) = x

 and ɸ(s) = #i

 and x resolves to x from #i in G

G,ɸ ⊨ C1 /\ C2

 if G,ɸ ⊨ C1

 and G,ɸ ⊨ C2

let
 function f1(i2 : int) : int =
 i3 + 1
in
 f4(14)
end

ty1 == INT()

INT() == INT()

"i" in #s1 |-> d1

ty2 == INT()

"f" in #s0 |-> d2

ty3 == FUN(ty4,ty5)

ty4 == INT()

…

ɸ = { ty1 -> INT(),

 ty2 -> INT(),

 ty3 -> FUN(INT(),ty5),

 ty4 -> INT(),

 d1 -> "i",

 d2 -> "f"

 }

Program Program constraints Unifier ɸ (model)

Constraint semantics

s0

s1

f1 : FUN(ty1,ty2)

i2i3

f4

Scope graph G (model)Semantics

meta-variables

Type Checking

What should a type checker do?

- Check that a program is well-typed!

- Resolve names, and check or compute types

- Report useful error messages

- Provide a representation of name and type information

‣ Type annotated AST

This information is used for

- Next compiler steps (optimization, code generation, …)

- IDE (error reporting, code completion, refactoring, …)

- Other tools (API documentation, …)

How are type checkers implemented?
20

How to check types?

Computing Type of Expression (recap)

- Can be executed top down, in premise order

- Could be written almost like this in a functional language

function (a : int) = a + 1

Fun("a", INT(),
 Plus(Var("a"), Int(1)))

FUN(INT(), INT())

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
 s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
 typeOfDecl of Var{x} in s |-> [(_, (_, T))].

Inferring the Type of a Parameter

- What are the consequences for our typing rules?

- Types are not known from the start, but learned gradually

- A simple top-down traversal is insufficient

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
 s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
 typeOfDecl of Var{x} in s |-> [(_, (_, T))].

function (a : int) = a + 1

Fun("a", INT(),
 Plus(Var("a"), Int(1)))

FUN(INT(), INT())

Unknown S!

Checking classes

How can we type check this program?

- Is there a possible single traversal strategy here?

- Why are the type annotations not enough?

- What strategy could be used?

Two-pass approach

- The first pass builds a class table

- The second pass checks expressions using the

class table

Question

- Does this still work if we introduce nested

classes?

class A {

 B m() {

 return new C();

 }

}

class B {

 int i;

}

class C extends B {

 int m(A a) {

 return a.m().i;

 }

}

Variables and Constraints

typeOfExp(s, Int(_)) = INT().

typeOfExp(s, Plus(e1, e2)) = INT() :-
 typeOfExp(s, e1) == INT(),
 typeOfExp(s, e2) == INT().

typeOfExp(s, Fun(x, te, e)) = FUN(S, T) :- {s_fun}
 typeOfTypeExp(s, te) == S,
 new s_fun, s_fun -P-> s,
 s_fun -> Var{x} with typeOfDecl S,
 typeOfExp(s_fun, e) == T.

typeOfExp(s, Var(x)) = T :-
 typeOfDecl of Var{x} in s |-> [(_, (_, T))].

function (a : int) = a + 1

Fun("a", INT(),
 Plus(Var("a"), Int(1)))

FUN(?S, INT()) ?S == INT()+

?S := INT()

What are challenges when implementing a type checker?

- Collecting necessary binding information before using it

- Gradually learning type information

What are the consequences of these challenges?

- The order of computation needs to be more flexible than the AST

traversal

- Support explicit logical variables during solving

25

How to check types?

Solving Constraints

Solving by Rewriting

C

{}; {}

Constraint

{}

{}

Solution

C'

G'; ɸ'

C''

G''; ɸ''

{}

G; ɸ...

Solving by Rewriting

<C; G, ɸ> ⟶ <C; G, ɸ>

 <t == u, C; G, ɸ> ⟶ <C; G, ɸ'> where unify(ɸ,t,u) = ɸ'

 <s1 -L-> s2, C; G, ɸ> ⟶ <C; G', ɸ> where ɸ(s1) = #i, ɸ(s2) = #j, 
 G + {#i -L-> #j} = G'

<r in s |-> t, C; G, ɸ> ⟶ <t == d, C; G, ɸ> where ɸ(r) = x, ɸ(s) = #i,  
 resolve(G, #i, x) = d

def solve(C):

 if <C; {}, {}> ⟶* <{}; G, ɸ>:

 return <G, ɸ>

 else:

 fail

Scope graph and
name resolution
algorithm don't have
to know about logical
variables

Non-deterministic
constraint selection

Solver = rewrite system

- Rewrite a constraint set + solution

- Simplifying and eliminating constraints

‣ Constraint selecting is non-deterministic

‣ Resolution order is controlled by side conditions on rewrite rules

- Rely on (other) solvers and algorithms for base cases

‣ Unification for term equality

‣ Scope graph resolution

- The solution is final if all constraints are eliminated

Does the order matter for the outcome?

- Confluence: the output is the same for any solving order

- Partly true for Statix

‣ Up to variable and scope names

‣ Only if all constraints are reduced

29

Solving by Rewriting

29

What is the difference?

- Algorithm computes a solution (= model)

- Semantics describes when a constraint is satisfied by a model

How are these related?

- Soundness

‣ If the solver returns <G, ɸ>, then G,ɸ ⊨ C

- Completeness:

‣ If a G and ɸ exists such that G,ɸ ⊨ C, then the solver returns it

‣ If no such G or ɸ exists, the solver fails

- Principality

‣ The solver finds the most general ɸ

30

Semantics vs Algorithm

Term Equality

& Unification

Syntactic Terms

INT()

FUN(INT(),INT()) f(t0,…,tn)

function symbol

arity

f(t0,…,tn) == g(u0,…,um) if

- f = g, and n = m

- ti == ui for every i

Generic Terms

Syntactic Equality

terms t, u

functions f, g, h

arguments

Variables and Substitution

f(g(),a)

terms t, u

functions f, g, h

variables a, b, c

substitution ɸ

ground term: a term without variables

ɸ = { a -> f(g(),b), b -> h() }

domain

f(g(),f(g(),b))

ɸ(a) = t if { a -> t } in ɸ

ɸ(a) = a otherwise

ɸ(f(t0,…,tn)) = f(ɸ(t0),…,ɸ(tn))

variable substitution

Unifiers

f(a,g()) == f(h(),b) a -> h()

b -> g()

g(a,f(b)) == g(f(h()),a) a -> f(h())

b -> h()

f(a,h()) == g(h(),b) no unifier, f != g

terms t, u

functions f, g, h

variables a, b, c

substitution ɸ

f(h(),g()) == f(h(),g())

g(f(h()),f(h())) == g(f(h()),f(h()))

f(b,b) == b b -> f(b,b) not idempotent

unifier: a substitution that makes terms equal

Most General Unifiers terms t, u

functions f, g, h

variables a, b, c

substitution ɸ

f(a,b) == f(b,c)

a -> g()

b -> g()

c -> g()

a -> b

c -> b

f(g(),g()) == f(g(),g())

f(b,b) == f(b,b)

b -> a

c -> a f(a,a) == f(a,a)most general

unifiers

Most General Unifiers

a -> g()

b -> g()

c -> g()

a -> b

b -> b

c -> b

a -> a

b -> a

c -> a

a -> b

b -> b

c -> b

terms t, u

functions f, g, h

variables a, b, c

substitution ɸ

b -> g()

b -> aa -> b

b -> b

c -> b

a -> a

b -> a

c -> a

a -> b

every unifier is an instance of a most general unifier

(implicit) identity case

most general unifiers are related by renaming substitutions

Unification
global ɸ

def unify(t, u):

 if t is a variable:

 t := ɸ(t)

 if u is a variable:

 u := ɸ(u)

 if t is a variable and t == u:

 pass

 else if t == f(t1,...,tn) and u == g(u1,...,um):

 if f == g and n == m:

 for i := 1 to n:

 unify(ti, ui)

 else:

 fail "different function symbols"

 else if t is not a variable:

 unify(u, t)

 else if t occurs in u:

 fail "recursive term"

 else:

 ɸ += { t -> u }

terms t, u

functions f, g, h

variables a, b, c

substitution ɸt == a 

instantiate variable

t == f(t1,...,t5), u == f(u1,…,u5) 
matching terms

t == f(t0,...,t5), u == g(u0,...,u3) 
mismatching terms
t == f(t0,...,t5), u == b 
swap terms
t == a, u == k(g(a,f())) 
recursive terms
t == a, u == k(u0,...,u5) 
extend unifier

u == b 
instantiate variable
b == b 
equal variables

Soundness

- If the algorithm returns a unifier, it makes the terms equal

Completeness

- If a unifier exists, the algorithm will return it

Principality

- If the algorithm returns a unifier, it is a most general unifier

Termination

- The algorithm always returns a unifier or fails

38

Properties of Unification

Efficient Unification

with Union-Find

Complexity of Unification

Space complexity

- Exponential

- Representation of unifier

Time complexity

- Exponential

- Recursive calls on terms

Solution

- Union-Find algorithm

- Complexity growth can be

considered constant 

h(a1 , …,an , f(b0,b0), …, f(bn-1,bn-1), an) ==

h(f(a0,a0), …,f(an-1,an-1), b1, …, bn-1 , bn)

a1 -> f(a0,a0)

a2 -> f(f(a0,a0), f(a0,a0))

ai -> … 2i+1-1 subterms …

b1 -> f(a0,a0)

b2 -> f(f(a0,a0), f(a0,a0))

bi -> … 2i+1-1 subterms …

terms t, u

functions f, g, h

variables a, b, c

substitution ɸ

a1 -> f(a0,a0)

a2 -> f(a1,a1)

ai -> … 3 subterms …

b1 -> f(a0,a0)

b2 -> f(a1,a1)

bi -> … 3 subterms …

fully applied triangular

Set Representatives

FIND(a):  
 b := rep(a)  
 if b == a:  
 return a  
 else  
 return FIND(b)  
 
 

UNION(a1,a2):  
 b1 := FIND(a1)  
 b2 := FIND(a2)  
 LINK(b1,b2)  

LINK(a1,a2):  
 rep(a1) := a2  
 
 
 
 

a == b  
c == a

u == w  
v == u  
x == v

x == c

a

b c

u

w v

x

representative

FIND(a):

 b := rep(a)

 if b == a:

 return a

 else

 b := FIND(b)

 rep(a) := b

 return b

UNION(a1,a2):  
 b1 := FIND(a1)

 b2 := FIND(a2)

 LINK(b1,b2)  

LINK(a1,a2):  
 rep(a1) := a2

FIND(a):  
 b := rep(a)  
 if b == a:  
 return a  
 else  
 return FIND(b)  
 
 

UNION(a1,a2):  
 b1 := FIND(a1)  
 b2 := FIND(a2)  
 LINK(b1,b2)  

LINK(a1,a2):  
 rep(a1) := a2  
 
 
 
 

Path Compression

…

x == b

x == c

x == w

x == v

a

b c

u

w v

x

Tree Balancing

FIND(a):

 b := rep(a)

 if b == a:

 return a

 else

 b := FIND(b)

 rep(a) := b

 return b

UNION(a1,a2):

 b1 := FIND(a1)

 b2 := FIND(a2)

 LINK(b1,b2)  

LINK(a1,a2):  
 if size(a2) > size(a1):

 rep(a1) := a2

 size(a2) += size(a1)

 else:

 rep(a2) := a1

 size(a1) += size(a2)

…

x == c

a

b c

u

w v

x
1

21

4

11

3

3 steps

2 steps

?

FIND(a):

 b := rep(a)

 if b == a:

 return a

 else

 b := FIND(b)

 rep(a) := b

 return b

UNION(a1,a2):  
 b1 := FIND(a1)

 b2 := FIND(a2)

 LINK(b1,b2)  

LINK(a1,a2):  
 rep(a1) := a2

The Complex Case

h(a1 , …,an , f(b0,b0), …, f(bn-1,bn-1), an) ==

h(f(a0,a0), …,f(an-1,an-1), b1, …, bn-1 , bn)

a1

a0

an-1

an

b1

b0

bn-1

bn

f(a0,a0)

f(an-2,an-2)

f(an-1,an-1)

f(b0,b0)

f(bn-2,bn-2)

f(bn-1,bn-1)

an == bn

f(an-1,an-1) == f(bn-1,bn-1)

an-1 == bn-1 an-1 == bn-1

f(an-2,an-2) == f(bn-2,bn-2)

⠸

a1 == b1 a1 == b1

f(a0,a0) == f(b0,b0)

a0 == b0 a0 == b0

How about occurrence checks? Postpone!

Main idea

- Represent unifier as graph

- One variable represent equivalence class

- Replace substitution by union & find operations

- Testing equality becomes testing node identity

Optimizations

- Path compression make recurring lookups fast

- Tree balancing keeps paths short

Complexity

- Linear in space and almost linear (inverse Ackermann) in time

- Easy to extract triangular unifier from graph

- Postpone occurrence checks to prevent traversing (potentially) large terms

45

Union-Find
Martelli, Montanari. An Efficient
Unification Algorithm. TOPLAS, 1982

Conclusion

What is the meaning of constraints?

- Formally described by constraint semantics

- Semantics classifies solutions, but do not compute them

- Semantics is expressed in terms of other theories

‣ Syntactic equality

‣ Scope graph resolution

What techniques can we use to implement solvers?

- Constraint simplification

‣ Simplification rules

‣ Depends on built-in procedures to unify or resolve names

- Unification

‣ Unifiers make terms with variables equal

‣ Unification computes most general unifiers

What is the relation between solver and semantics?

- Soundness: any solution satisfies the semantics

- Completeness: if a solution exists, the solver finds it

- Principality: the solver computes most general solutions

47

Summary

47

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

