CS4200-A: Summary & Further Study

Eelco Visser

]
TUDelft

CS4200 | Compiler Construction | October 21, 2021

Outline

Compiler Components
- What did we study?

Meta-Linguistic Abstraction
- Another perspective

Domain-Specific Languages
- Applying compiler construction in software engineering

Further Study & Research
- Courses and conferences

Research Challenges
- Including topics for master thesis projects

Exam Dates

Compiler Components

What is a Compiler?

A bunch of components for translating programs

Abstract
Annotated Transformed Assembly
Syntax CodeGen
AST Code

Compiler Components

Parser

- Reads in program text, checks that it complies with the syntactic rules of the language, and
produces an abstract syntax tree, which represents the underlying (syntactic) structure of the

program.
Type checker

- Consumes an abstract syntax tree and checks that the program complies with the static
semantic rules of the language. To do that it needs to perform name analysis, relating uses of

names to declarations of names, and checks that the types of arguments of operations are
consistent with their specification.

Optimizer

- Consumes a (typed) abstract syntax tree and applies transformations that improve the program
IN various dimensions such as execution time, memory consumption, and energy consumption.

Code generator

- Transforms the (typed, optimized) abstract syntax tree to instructions for a particular computer
architecture. (aka instruction selection)

ChocoPy Compiler

Syntax definition
- Parser through generation, design of abstract syntax

Static semantic analysis

- Name analysis
» Lexical scoping, type-dependent name resolution
- [Type checking
» Class-based object-oriented language with sub-typing

Desugaring
- Simple rewrite rules and strategies

Code generation

- Generation of Risc V instructions
- AST-to-AST transformation

Data-flow analysis
- Optimization

CS4200-A

CS4200-B

Further Study

More Compiler Components

- Static analyses

- Optimization

- Register allocation

- Code generation for register machines
- Garbage collection

CS4200-B

Other Object Languages

- Functional programming: first-class functions, laziness

- Domain-specific languages: less direct execution models
- Data (description) languages

- Query languages

Meta-Linguistic Abstraction

Separation of Concerns

Language design
- Define the properties of a language
- Done by a language designer

Language implementation
- Implement tools that satisty properties of the language
- Done by a language implementer

Can we automate the language implementer?
- That Is what language workbenches attempt to do

General-
Purpose
Language

Solution

Problem

Domain Domain

Declarative General-
Meta Purpose
Languages Language

Compiler +

Language

Design Editor (IDE)

_ _ _

That also applies to the definition of (compilers for) general purpose languages

Declarative Language Definition

Objective
- A workbench supporting design and implementation of programming languages

Approach

- Declarative multi-purpose domain-specific meta-languages

Meta-Languages
- Languages for defining languages

Domain-Specific
- Linguistic abstractions for domain of language definition (syntax, names, types, ...)

Multi-Purpose

- Derivation of interpreters, compilers, rich editors, documentation, and verification from single
source

Declarative
- Focus on what not how; avoid bias to particular purpose in language definition

Spoofax Meta-Languages

SDF3: Syntax definition

- context-free grammars + disambiguation + constructors + templates
- derivation of parser, formatter, syntax highlighting, ...

Statix: Names & Types CS4200-A

- name resolution with scope graphs
- type checking/inference with constraints
- derivation of name & type resolution algorithm

Stratego: Program Transformation
- term rewrite rules with programmable rewriting strategies
- derivation of program transformation system

CS4200-B

FlowSpec: Data-Flow Analysis
- extraction of control-flow graph and specification of data-flow rules
- derivation of data-flow analysis engine

DynSem: Dynamic Semantics
- specification of operational (natural) semantics
- derivation of interpreter

PIE: Interactive Software Pipelines

Domain
- Build systems, software pipelines

Design

- Define tasks as functions

- Dynamic dependencies

- Incrementally recompute only tasks affected by a change

Implementation

- Generate Kotlin code
- Run-time dependency analysis

Applications
- Spoofax build, benchmarking pipeline

PIE: Parsing Pipeline

typealias In = Serializable; typealias Out = Serializable
interface Func<in I:In, out O:0ut> {
fun ExecContext.exec(input: I): O
}
interface ExecContext {
fun <I:In, 0:0ut, F:Func<I, 0>> requireCall(clazz: KClass<F>, input: I,
stamper: OutputStamper = QutputStampers.equals): O
fun require(path: PPath, stamper: PathStamper = PathStampers.modified)
fun generate(path: PPath, stamper: PathStamper = PathStampers.hash)

}

class GenerateTable: Func<PPath, PPath> {
override fun ExecContext.exec(syntaxFile: PPath): PPath {
require(syntaxFile); val tableFile = generateTable(syntaxFile);
generate(tableFile); return tableFile
b}
class Parse: Func<Parse.Input, ParseResult> {
data class Input(val tableFile: PPath, val text: String): Serializable
override fun ExecContext.exec(input: Input): ParseResult {
require(input.tableFile); return parse(input.tableFile, input.text)

b}

class UpdateEditor: Func<String, ParseResult> {
override fun ExecContext.exec(text: String): ParseResult {
val tableFile = requireCall(GenerateTable::class, path("syntax.sdf3"))
return requireCall(Parse::class, Parse.Input(tableFile, text))

b}

Spoofax 3

Spoofax 3 = Spoofax/PlE

- An implementation of Spoofax with PIE as glue
- Get more live responses

- Under development => bugs! (apologies)

Compiler construction is a lot of fun ...

... but when would | ever implement a programming language?

16

Domain-Specific Languages

Traditional Compiler

Source: high-level machine language

Abstract
Annotated Transformed AL
Syntax CodeGen
AST bytecode

Target: low-level machine language

Domain-Specific Language

Domain- General- :
Problem . Solution
i Specific Purpose]
Domain Domain
Language Language

Domain-specific language (DSL)
noun

1. a programming language that provides notation, analysis,
verification, and optimization specialized to an application
domain

2. result of linguistic abstraction beyond general-purpose
computation

DSL Compiler

Source: domain-specific language

A
bstract Annotated Transformed
Syntax AST CodeGen

Target: high-level machine language

Same architecture, technigues as traditional compiler

Green-Marl

Domain
- Graph analytics

Design
- Domain-specific graph traversal, aggregation

Implementation
- Compiller introduces parallel implementation
- Back-ends with different characteristics (parallel, distributed, ...)

Applications
- Many graph analytics algorithms such as page rank, ...

Domain
- Web programming

Design
- Sub-languages for sub-domains
> Entities, Queries, Ul (Pages, Templates, Actions), Search, Access Control

- Type checker checks cross-domain consistency

Implementation

- Generate Java code with web libraries
» Hibernate (ORM), Lucene (search), ...

WebDSL Applications

d C @ N & 2020.splashcon.org PA O

Write a Blog >>

SPLASH2020 CHICAGDO
SPLASH2020

20 November 2020

Attending v Tracks v Organization ~ Q search Series ~ Sign in Sign up

Photo by Allen McGregor

A SPLASH 2020 Tracks

OOPSLA | Onward! Essays | Onward! Papers |
Rebase | Workshops
Show all tracks

SPLASH 2020

Welcome to the website of the SPLASH 2020 conference. We are working hard to fill the website with all
related information. Please check back soon!

Upcoming Important Dates

Wed 15 Apr 2020 ©
OOPSLA Paper Submission

SPLASH 2020 - Chicago, USA

Wed 22 Apr 2020 ©
SPLASH is the ACM SIGPLAN conference on Systems, Programming, Languages, and Applications: SAS Abstract Submission
Software for Humanity. SPLASH embraces all aspects of software construction and delivery, to make it
the premier conference on the applications of programming languages—at the intersection of
programming languages and software engineering. SPLASH 2020 will take place in Chicago from
Sunday 15th to Friday 20th of November 2020. Early registration deadline for the conference will be
Thursday 15th October AOE.

Fri 24 Apr 2020 ©
SAS Paper Submission

Sat 13 - Tue 16 Jun 2020 ©
SAS Author Response Period
SPLASH includes the following co-located conferences: OOPSLA, Onward!, GPCE, SLE, DLS, and

MPLR; as well as a large array of workshops and events. Thu 11 - Tue 16 Jun 2020 ©

OOPSLA Author Response
The SPLASH-I will feature a number of speakers of interest to software practitioners and researchers
alike. Wed 1 Jul 2020 ©
OOPSLA Author Notification
d C ® Q[6 mystudyplanning.tudelft.nl/scheduler#/year?_k=2ywzaz @ A O =

My Study Planning

Overview Supervisor Student Overview Course Statistics Demo Track Select Demo Planning Demo Track Regs Demo Add Additional Courses> Demo Submit Demo Submissions History

Eelco Visser Sign out

EEMCS \ Computer Science Total ects: 73

A
CS - Software Technology 2016 Q1/Q5 (X3 [eFY e 29 | [ek] ECs | (e'Y ECs |
Search, ex algorithm ec:4 period:3 IN4301 Advanced Algorithms IN4152 3D Computer CS4065 Multimedia
Graphics and Search and
Common Core ST 2016 Animation Recommendation

R cc 4o/5; | [EC5]
Specialisation courses start first period 2016

v

Specialisation courses start second period
2016

IN4306 Literature IN4150 Distributed
Survey Algorithms

Specialisation courses start third period 2016 CS4130 Seminar CS4090 Quantum
v

m Programming Communication and

Specialisation courses start fourth period ganauages %)graphy
v 016

EC 10/60

Research Groups 2016 IN4252 Web Science & Engineering
v

[EC 63/327

Seminarvakken CS 2016 [ECS
v

[EC 5780

Special Programmes 2016 Ié\l41 ?01 i:i]u"ty and g::;?g(l;:;gl:ge-
v m

pPesEey Security
Common Core DST 2016 [ECS5) [EC5]

v

Other Specialisations 2016
v

[EC 5720
EIT Master's Programme ICT Innovation [EC6 |
2016

IN4085 Pattern Recognition

IN4073TU Embedded CS4015 Behaviour
Real-Time Systems Change Support

[ecs] Ccs g

d C /@ N & weblab.tudelft.nl/ti2606/2017-2018/assignment/14943/submission/9215/view

9 A 0O =

4 Actions~ 0.0/10.0 m A3 [E © Submission info

© Assignment A @ Answer ol Statistics/Dates [E Submissions [Edit Checklist / EditAssignment /¥ Manage Assignment Tree # Discussions

@EELCO VISSER / CSE2120 / 2017-2018 / CPL / LAB / ASSIGNMENT 4 M

>_ Func + Env % Not completed yet

O You are viewing this submission in read-only mode. Deadline passed.

Description Assignment Info
Solution Test e
O visible from: Fri, Jul 6, 2018 13:00 &
1 | import Library._
Summary: g import Untyped._
4 1 NotImpl tedE: ti tends P E: ti "
1. Implement the interpreter as specified by the notes. 5 case class NotImplementedException() extends Parsexception(™")
You should consult chapter 6 and chapter 7 from the 6+ object Parser {
book to understand the concepts. 7 def parse(str: String): ExprExt = parse(Reader.read(str))
8

2. Develop more telsts to sup[?on your understanding of the 9-| def parse(sexpr: SExpr): ExprExt = {
expected behaviour of the interpreter. 10 throw NotImplementedException()
3. Do not change the signature of the functions given, or 1 }

you'll run into compilation problems with specification g ¥

tests. 14 +| object Desugar {

15+ def desugar(e: ExpreExt): ExprC = {
16 throw NotImplementedException()
17
18 ([}
19
20 ~|object Interp {

21 def interp(e: Expr(C): Value = interp(e, Nil)
22
23~ def interp(e: ExprC, nv: Environment): Value = {
24 throw NotImplementedException()

25
26 [}
27
28

Console Grading Discussion Revision History

Compile P Your Test P Spec-test

Status: None

Spec-tests ran: 0 @

N CcC & 0

researchr profile library explore calendar eg:dijkstra1959 = search

All Publications

Unidentified publications

Copy publications

External Links
Homepage
DBLP

ACM

LinkedIn
Twitter

Google Scholar
Blog

ORCID

PA O =

@ researchr.org/profile/eelcovisser

inbox (1551) | Eelco Visser | Sign Off

Your Profile

About | Publications | Co-authors | Theses | Contributions | Reviews | Bibliographies | Groups | Edit

ABOUT EELCO VISSER

Eelco Visser is Antoni van Leeuwenhoek Professor of Computer Science at Delft University of Technology. He
received a master’s and doctorate in computer science from the University of Amsterdam in 1993 and 1997,
respectively. Previously he served as postdoc at the Oregon Graduate Institute, as Assistant Professor at Utrecht
University, and as Associate Professor at TU Delft.

His research interests include software language engineering, domain-specific programming languages, model-
driven engineering, program transformation, software deployment, and interaction design.

With his students he has designed and implemented the Spoofax language workbench, as well as many domain-

Profile Name

eelcovisser

User

Statistics
Publications: 201
Edited: 10
Credit: 33776

Aliases
Visser

E. Visser
Visser, Eelco
Visser, E.

Eelco Visser

specific languages, including DSLs for syntax definition (SDF), program transformation (Stratego), software
deployment (Nix), web application development (WebDSL), and mobile phone applications (mobl). He is the lead
developer of the researchr bibliography management system.

AFFILIATIONS

2006 - : Delft University of Technology
1998 - 2006 : Utrecht University

1997 - 1998 : Oregon Graduate Institute
1993 - 1997 : University of Amsterdam

RECENT PUBLICATIONS

A Research Agenda for Formal Methods in the Netherlands
Marieke Huisman, Wouter Swierstra, Eelco Visser.
Technical Report UU-CS-2019-004, 2019. [doi] [X]

nixos.org

Fast and Safe Linguistic Abstraction for the Masses
Eelco Visser.
In A Research Agenda for Formal Methods in the Netherlands. pages 10-11, July 2019. [X]

From Definitional Interpreter to Symbolic Executor
Mensing, Adrian D., Hendrik van Antwerpen, Casper Bach Poulsen, Eelco Visser.
In Proceedings of the 4th ACM SIGPLAN International Workshop on Meta-Programming Techniques and Reflection. 2019: 11-20 [doi] [X]

Precise, Efficient, and Expressive Incremental Build Scripts with PIE
Gabriél Konat, Roelof Sol, Sebastian Erdweg, Eelco Visser.
In Second Workshop on Incremental Computing (IC 2019). 2019: [X]

d C @ [0 & evatool.tudelft.nl A O =

EvaTool Adminstration People Committees Faculty ~

Prof. Dr. E. Visser v

EvaTool - Education Evaluation

Organize the workflow of course and programme evaluation. Record course statistics. Collect feedback
from students and instructors. Produce a printable report summarizing the evaluation of a quarter or
semester.

read more

Your Dashboard

Educations Your Courses
Filter by course name, code or period
Search by course code, name or period Search
Filter by category
Education period Education level Education discipline
Nothing to filter Nothing to filter Nothing to filter
Results

WebDSL: Automatic Persistence

Data Entity DB
Model Classes Schema

WebDSL Java DB
Object Object Records

WebDSL.: Entity Declarations

entity declaration‘
entity E { ”””””’,r¢”

prop :: ValueType

prop -> EntityType

prop <> EntityType

prop -> Set<EntityType>

prop -> List<EntityType>

prop -> EntityType (inverse=EntityType.prop)

function f(x : ArgType) : ReturnType {
statements;

}

}

WebDSL: Page Definition & Navigation

page navigation (page call) ‘

entity A { b -> B }
entity B { name :: String }

define page a(x : A) {
navigate b(x.b){ output(x.b.name) }
§

define page b(y : B) {
/////——_' output(y.name)
$

WebDSL.: Templates (Page Fragments)

template definition I

N\

define main() {
1ncludeCSS("wik1i.css")

top()
block[class="content"] {
elements()
template call ' ¥ \ parameter
5

define span top() {
navigate root() {"Wiki"}

¥

WebDSL: Forms

define page editpage(p : Page) {

main4{ *
header{output(p.name) " (Edit)"} L_:Tii__}
form{ / binding

1nput(p.content)
submit action{ return page(p); } { "Save" }

¥ / '\
¥
b submic | poge

no separate controller: page renders form and handles form submission

WebDSL: Search

search annotations I
entity Page {

name :: String (1d,searchable) 4——————/’//’

content .. WikiText (searchable)
modified : . DateTime
authorSearch :: String (searchable) := authorNames()
}
define page search(query : String) {
var newQuery : String := query;
form {
Lnput(newQuery)
submit action{ return search(newQuery); } {"Search"}
}

for(m : Message in searchPage(query, 50)) {

output(m)
} P
%

search queriesl

WebDSL: Validation Rules

data validation'

entity E { ‘//,,,,////
validate(c, m)

prop :: t (validate(c, m))

%
define t() { ‘////P——————————

input(x) { validate(c, m) }

action a() { validate(c, m); message(m); }

form validation

7

action assertions I

.

MESSages

WebDSL: Data Validation Lifecycle

Value Well-formedness Errors

B Messages
CO;;?:mZTS;GSt - Upd\z/a;leut;/l:del » Validate Forms » Handle Actions - Rengeerd:::gte - Render Page

Data Invariant or Action Assertion Error |

WebDSL.: securityContext

entity User {
username :: String (1d)
fullname :: String (name)
email . Email
password :: Secret

¥

representation of principal

access control rules

principal 1s User with credentials username, password

session securityContext {

turn on access control' SEE—— principal -> User

¥

WebDSL: Authentication

WebDSL Wiki

define page signin() {
var username : String
var password : Secret

action doit(){ signin(username, password); }

main{
header{"Sign In"}
form{

par{ label("Username: "){ input(username) } }
par{ label("Password: "){ input(password) } }
par{ action("Sign in", doit()) }

¥

section{
header{"Register"}

par{ "No account? " navigate(register()){ "Register now" } }

¥
}
}

Sign In

Username:

Alice

Password:

L Signin |

Register

No account? Register now

WebDSL: Access Control Rules

access control rules
rule template *(*) { true }

rule page page(n : String) {
loggedIn() || findPage(n) != null

¥ \ ‘anyone can view
rule page editpage(p : Page) { existing pages, only
loggedIn() logged in users can

1 \ create pages’

‘only logged in users may edit pages’

WebDSL: Linguistic Integration

Data models
- automatic persistence

User interface templates
- parameterized definition of page fragments
- request and response handling

Data validation
- form validation & data integrity

Access control rules and policies
- through constraints over objects

lceDust: Computing with Derived Values

Domain
- Information systems
- Data modelling with derived values

Design
- Native multiplicities and relations

- Different strategies for (re-)computing derived values
> On demand (on read), incremental (on write), eventual (eventually consistent)

Implementation

- Generate WebDSL code
- Strategy implementation based on static dependency analysis

Applications
- Weblab grading logic

lceDust: Grading Logic

entity Submission {

DASS . Boolean = grade >= 5.5 <+ false

grade . Float?

1f(conj(children.pass))

avg(children.grade)

¥

entity Assignment {
avgGrade : Float?

¥

relation Assignment.parent

relation Submission.assignment 1 <-> * Assignment.submissions

relation Submission.parent

avg(submissions.grade)

? <-> * Assignment.children

? <-> * Submission.children

lceDust: Grading Logic

gradeWeighted:

gradeRounded
gradeOnTime
maxNotPassed
passSub

maxNotPass

grade

Float =
Float =

Float =

Float =

Boolean

Float =

Float =

1f(weightCustom > 0.0) totalGrade / weightCustom <+ 0.0 else totalGrade (inline)
max (gradeWeighted - (sub.penalty <+ 0.0) ++ 1.0).roundl () (lnline)
1f(sub.onTime <+ false) gradeRounded else 0.0 (inline)
max (0.0 ++ assignment.minimumToPass — 0.5).roundl () (lnline)
= sub.filter (:AssignmentCollectionSubmission) .passSub <+ true (inline)
1f (passSub) gradeOnTime else min (gradeOnTime ++ maxNotPassed) (inline)
min (maxNotPass ++ scheme.maxGrade) (eventual)

PixieDust

Domain
- Client-side web programming

Design
- Web views as lIceDust-style derived values
- Incremental update of view based on changes in model

Implementation

- Generate JavaScript code
- Strategy implementation based on static dependency analysis

Applications
- Small toy application(s)

PixieDust: Model & View

model view
entity TodoList ({ TodoList ({
todos : Todox (inverse = Todo.list) view : View = div {
) header
entity Todo ({ ul { visibleTodos.itemView }
. . . footer
description : String \
finished : Boolean
header : View = div {

hl { "Todos" }
view input [type="checkbox", value = allFinished,
TodoList.view div { ul { todos.itemView } } onClick = toggleAll]
StringInput [onClick = addTodo] (input)

Todo.itemView = 11 {

input [type="checkbox", value=finished] . ,
. . footer : View = div {
span { description } todosLeft "items left"
} view ul {
TodoList visibilityButton(this, "AIl")
input : String = (init = "") visibilityButton (this, "Finished")
show : String = (init = "All") visibilityButton(this, "Not finished")

}

finishedTodos : Todox = 1f (count (finishedTodos) > 0)

todos.filter (todo => todo.finished) puttonfonClick = clearFinished]
(inverse = Todo.inverseFinishedTodos?) \ }
Todo {
visibleTodos : Todox = itemView : View = 1li { div {
switch BooleanInput (finished)
case show == "All" => todos span { task }
case show == "Finished" => finishedTodos button[onClick=deleteTodo] { "X" }

default => todos \ finishedTodos }}

}

(inverse = Todo.inverseVisibleTodos?)

Research Challenges in
Compiler Construction

Vision: Language Designer’s Workbench

High-Level Declarative Language Definition
- Human readable / understandable definition
- Serves as reference documentation

Verification

- Automatically verify properties of language definition
- Type soundness of interpretation

- Type preservation of transformations

- Semantics preservation of transformation

Implementation

- Generate production quality tools from language definition
- Interpreter, compiler, IDE with refactoring, completion, ...
- Correct-by-construction, high performance

Syntax

High-Performance Parsing

- JSGLR2: 2x to 10x speed-up compared to JSGLR

- More speed-up possible?

- Explore effects of different parse table formats (LR, SLR, LALR)

Error Recovery & Error Messages

- Apply error recovery approach of [TOPLAS12] to JSGLR?2
- Generate high quality error messages

Incremental Parsing
- Re-parse effort proportional to change of program text
- Approach: adapt Graham/Wagner algorithm to SGLR

Extensible Syntax
- Extend syntax during parsing to support extensible languages

Workbench / Editor Services

Code Completion
- Semantic code completion based on static semantics

Refactoring

- Sound refactoring scripts

- Refactoring based on scope graph program model

- New NWO MasCot project: programming and validating software restructurings

Live Language Development

- Immediate response after edit of language definition

- Requires: incremental evaluation of all compiler components

- Ongoing work: PIE DSL for interactive software development pipelines

Language Deployment
- Generate stand-alone language implementation: PIE partial evaluation

Workbench / Editor Services

Portable Editors

- Portable editor bindings based on AESI| model (Pelsmaeker)
- Case study: bindings for Visual Studio, Intellid, LSP

Web Editors

- Generate language-specific editors for use in web browser

- Architectural questions

> All processing client-side”? Stateful back-end on server? Scalability?
> Performance of Web Assembly (WASM) better than JS?

- Collaborative editing (operational transform)

Interactive Notebooks
- Combine documents with code in several languages and results of execution

Statics with Statix

Specification of type systems with Statix

- Subset of CHR (Constraint Handling Rules) + domain-specific
constraints for scope graphs and relations

- Support more advanced type systems

- Structural types, polymorphism (generics), sub-typing [OOPSLA’18]
> Better encoding?

> (Generalization (for parametric polymorphism)?

Solver

- Matrix-based name resolution algorithm?
- Correctness wrt resolution calculus?

- Scalability: modular and incremental analysis?

Exploring Type System Design Landscape

Substructural Type Systems

- Linear types
- Rust

Gradual Type Systems

- Gradual type theory: encode calculi and experiment

- Implement existing gradual type checkers
> Python, TypeScript, Dart, Hack

- Design gradual type system for Stratego

Dependent Types
- Agda, Ildris

Syntax + Statics

Program Model
- Extend term data model to incorporate scopes and types
- Persistent storage

- Query: retrieve information based on scope graph model
> All methods in class A

- Construction
» well-formed wrt static semantics

Random Program Generation

- Generation of well-formed and well-typed programs

- based on syntax + static semantics

- for testing compilers and other language processing tools

Theme: Incremental Compilation

Make all (meta) language processing incremental
- Effort proportional to size of change

Modular analysis out of the box
- Static analysis incremental based on (scope graph) dependencies

Compiler = build system
- Use PIE to glue together language processing pipelines

In progress

- Incremental parsing

- Incremental compilation for Stratego (in Beta)
- Incremental compilation for WebDSL

Theme: Error Localization and Diagnosis

Error Localization
- What program element is responsible for the failure?

- Minimal unsatisfiable core
> What is the smallest set of constraints that correspond to failure?

Error Diagnosis
- Generate good (understandable) explanation of error
- Based on unsat core

Studying Programming
Languages

Courses

Compiler Construction B (Q2)
- Study back-end components of compiler

Software Verification (Q3)
- Learn the basics of mechanised verification with Agda dependently typed programming language

Web Programming Languages (Q3)
Language-Based Software Security (Q4)

Language Engineering Project (Q4)
- Develop a Spoofax language definition for an interesting language

Seminar Programming Languages (Q1)
- Read and discuss papers from the PL literature

System Validation (Q1)
- Check properties of (concurrent) software with model checking

Master Thesis Project in PL group

Industrial Internships

Oracle Labs (Zurich)

- Applications of Spoofax: GreenMarl, PGQL
- Other projects (Truffle/Graal)

Canon (Venlo)
- Designs and manufactures digital printers
- New project to investigate design of DSLs in digital printing domain

Philips (Best)

- Software restructuring

Other

- Opportunities for language design and implementation projects at other
companies

Conferences

ACM Special Interest Group on Programming Languages
- http://sigplan.org/

Key SIGPLAN Conferences

- POPL.: Principles of Programming Languages

- PLDI: Programming Language Design and Implementation

- ICFP: International Conference on Functional Programming

- OOPSLA/SPLASH: Systems, Programming Languages, and Applications
- SLE: Software Language Engineering

- GPCE: Generative Programming

Other Conferences
- ECOOP: European PL conference
- ESOP: European Symposium on Programming

http://sigplan.org/

Summer Schools

PLMW: Programming Languages Mentoring Workshop

- technical sessions on cutting-edge research in programming languages, and
mentoring sessions on how to prepare for a research career

- At ICFP, POPL, PLDI, SPLASH

OPLSS: Oregon Programming Languages Summer School
- Foundational work on semantics and type theory

- Adanced program verification techniques

- Experience with applying the theory

DSSS: DeepSpec Summer School
- Formal verification

PLISS: Programming Language Implementation Summer School
- Programming language systems, implementation, analysis

After the Master

PhD

- Dive into PL research for four years
- Develop new PL theory, designs, and implementations
- Write research papers and a dissertation

- Presentyour-work-at-conterences—<
PL in industry

- Develop compilers, analyses, run-time systems

- Contribute to development of industrial programming languages
» Oracle Labs (PGX), Google (Dart), Amazon (Cloud9), Canon (OIL)

AYA AVa \W XA A
W J V \J W

Wanted: PhD Students in PL

Software Restructuring
- A principled approach to programming refactorings/restructurings
- Application: Transforming C++ code

Language Engineering
- Static semantics and type checking
- Deriving interpreters, compilers from dynamic semantics

Dependently Typed Programming
- Contributing to the semantics and implementation of Agda

Concurrency

Category Theory

Wanted: Grammar Engineer

Goal

- A collection of high quality syntax definitions for key languages
- Spoofax with batteries included’
- Speeding up research case studies

Developing Syntax Definitions
- High quality
- High coverage

Research Assistant
- 4 - 8 hours per week (flexible)
- Appointment per project (language)

Wanted: Web Programmer

Academic Workflow Engineering

- Make university work better with web apps that automate workflows
- Education
> WeblLab, mystudyplanning, Evalool

- Research
» conf.researchr.org, researchr.org, mentoring

- Administration

Combine with PL research

- Use high-level web PLs (WebDSL, IceDust)
- Contribute to better abstractions for web programming

http://conf.researchr.org
http://researchr.org

Exam and Resit

October 28: Exam
- 13:30-16:30

January 21: Resit
- 13:30-16:30

Topics
- Everything we studied in the lectures

- Example exam guestions
> homework assignments
> exam from last year

Except where otherwise noted, this work is licensed under

()

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

