
CS4200-A: Summary & Further Study

CS4200 | Compiler Construction | October 21, 2021

Eelco Visser

Compiler Components

- What did we study?

Meta-Linguistic Abstraction

- Another perspective

Domain-Specific Languages

- Applying compiler construction in software engineering

Further Study & Research

- Courses and conferences

Research Challenges

- Including topics for master thesis projects

Exam Dates

Outline

Compiler Components

What is a Compiler?

A bunch of components for translating programs

Java Type Check Assembly

Code

Parse CodeGenOptimize
Abstract

Syntax

Tree

Annotated

AST

Transformed

AST

Parser

- Reads in program text, checks that it complies with the syntactic rules of the language, and

produces an abstract syntax tree, which represents the underlying (syntactic) structure of the
program.

Type checker

- Consumes an abstract syntax tree and checks that the program complies with the static

semantic rules of the language. To do that it needs to perform name analysis, relating uses of
names to declarations of names, and checks that the types of arguments of operations are
consistent with their specification.

Optimizer

- Consumes a (typed) abstract syntax tree and applies transformations that improve the program

in various dimensions such as execution time, memory consumption, and energy consumption.

Code generator

- Transforms the (typed, optimized) abstract syntax tree to instructions for a particular computer

architecture. (aka instruction selection)

Compiler Components

Syntax definition

- Parser through generation, design of abstract syntax

Static semantic analysis

- Name analysis

‣ Lexical scoping, type-dependent name resolution

- Type checking

‣ Class-based object-oriented language with sub-typing

Desugaring

- Simple rewrite rules and strategies

Code generation

- Generation of Risc V instructions

- AST-to-AST transformation

Data-flow analysis

- Optimization

ChocoPy Compiler

}
}

CS4200-A

CS4200-B

More Compiler Components

- Static analyses

- Optimization

- Register allocation

- Code generation for register machines

- Garbage collection

Other Object Languages

- Functional programming: first-class functions, laziness

- Domain-specific languages: less direct execution models

- Data (description) languages

- Query languages

- …

Further Study

}CS4200-B

Meta-Linguistic Abstraction

Language design

- Define the properties of a language

- Done by a language designer

Language implementation

- Implement tools that satisfy properties of the language

- Done by a language implementer

Can we automate the language implementer?

- That is what language workbenches attempt to do

Separation of Concerns

Compiler +

Editor (IDE)

Language

Design

General-
Purpose

Language

Declarative
Meta

Languages

Solution

Domain

Problem

Domain

General-
Purpose

Language

Language

Design

That also applies to the definition of (compilers for) general purpose languages

Objective

- A workbench supporting design and implementation of programming languages

Approach

- Declarative multi-purpose domain-specific meta-languages

Meta-Languages

- Languages for defining languages

Domain-Specific

- Linguistic abstractions for domain of language definition (syntax, names, types, …)

Multi-Purpose

- Derivation of interpreters, compilers, rich editors, documentation, and verification from single

source

Declarative

- Focus on what not how; avoid bias to particular purpose in language definition

Declarative Language Definition

SDF3: Syntax definition

- context-free grammars + disambiguation + constructors + templates

- derivation of parser, formatter, syntax highlighting, …

Statix: Names & Types

- name resolution with scope graphs

- type checking/inference with constraints

- derivation of name & type resolution algorithm

Stratego: Program Transformation

- term rewrite rules with programmable rewriting strategies

- derivation of program transformation system

FlowSpec: Data-Flow Analysis

- extraction of control-flow graph and specification of data-flow rules

- derivation of data-flow analysis engine

DynSem: Dynamic Semantics

- specification of operational (natural) semantics

- derivation of interpreter

Spoofax Meta-Languages

}
}

CS4200-A

CS4200-B

Domain

- Build systems, software pipelines

Design

- Define tasks as functions

- Dynamic dependencies

- Incrementally recompute only tasks affected by a change

Implementation

- Generate Kotlin code

- Run-time dependency analysis

Applications

- Spoofax build, benchmarking pipeline

PIE: Interactive Software Pipelines

PIE: Parsing Pipeline

Spoofax 3 = Spoofax/PIE

- An implementation of Spoofax with PIE as glue

- Get more live responses

- Under development => bugs! (apologies)

Spoofax 3

16

Compiler construction is a lot of fun …

… but when would I ever implement a programming language?

Domain-Specific Languages

Traditional Compiler

Java Type Check JVM

bytecode

Parse CodeGenOptimize
Abstract

Syntax

Tree

Annotated

AST

Transformed

AST

Source: high-level machine language

Target: low-level machine language

Domain-Specific Language

Solution

Domain

Problem

Domain

Domain-specific language (DSL)

noun

1. a programming language that provides notation, analysis,

verification, and optimization specialized to an application
domain

2. result of linguistic abstraction beyond general-purpose
computation

General-
Purpose

Language

Domain-
Specific

Language

DSL Compiler

DSL Type Check JavaParse CodeGenOptimize
Abstract

Syntax

Tree

Annotated

AST

Transformed

AST

Same architecture, techniques as traditional compiler

Source: domain-specific language

Target: high-level machine language

Domain

- Graph analytics

Design

- Domain-specific graph traversal, aggregation

Implementation

- Compiler introduces parallel implementation

- Back-ends with different characteristics (parallel, distributed, …)

Applications

- Many graph analytics algorithms such as page rank, …

Green-Marl

Domain

- Web programming

Design

- Sub-languages for sub-domains

‣ Entities, Queries, UI (Pages, Templates, Actions), Search, Access Control

- Type checker checks cross-domain consistency

Implementation

- Generate Java code with web libraries

‣ Hibernate (ORM), Lucene (search), …

WebDSL

WebDSL Applications

WebDSL: Automatic Persistence

Data
Model

DB
Schema

Entity

Classes

WebDSL

Object

Java

Object

DB
Records

WebDSL: Entity Declarations

entity declaration
property

WebDSL: Page Definition & Navigation

entity A { b -> B }
entity B { name :: String }

define page a(x : A) {
 navigate b(x.b){ output(x.b.name) }
}
define page b(y : B) {
 output(y.name)
}

page definition

page navigation (page call)

WebDSL: Templates (Page Fragments)

define main() {
 includeCSS("wiki.css")
 top()
 block[class="content"] {
 elements()
 }
}
define span top() {
 navigate root() {"Wiki"}
}

parameter

template definition

template call

WebDSL: Forms

define page editpage(p : Page) {
 main{
 header{output(p.name) " (Edit)"}
 form{
 input(p.content)
 submit action{ return page(p); } { "Save" }
 }
 }
}

data
binding

page

flow

submit

no separate controller: page renders form and handles form submission

WebDSL: Search

search annotations

search queries

WebDSL: Validation Rules

data validation

form validation

action assertions messages

WebDSL: Data Validation Lifecycle

WebDSL: securityContext

turn on access control

representation of principal

WebDSL: Authentication

WebDSL: Access Control Rules

‘only logged in users may edit pages’

‘anyone can view
existing pages, only
logged in users can

create pages’

Data models

- automatic persistence

User interface templates

- parameterized definition of page fragments

- request and response handling

Data validation

- form validation & data integrity

Access control rules and policies

- through constraints over objects

WebDSL: Linguistic Integration

Domain

- Information systems

- Data modelling with derived values

Design

- Native multiplicities and relations

- Different strategies for (re-)computing derived values

‣ On demand (on read), incremental (on write), eventual (eventually consistent)

Implementation

- Generate WebDSL code

- Strategy implementation based on static dependency analysis

Applications

- WebLab grading logic

IceDust: Computing with Derived Values

IceDust: Grading Logic

entity Submission {

 pass : Boolean = grade >= 5.5 <+ false

 grade : Float? = if(conj(children.pass))

 avg(children.grade)

}

entity Assignment {

 avgGrade : Float? = avg(submissions.grade)

}

relation Assignment.parent ? <-> * Assignment.children

relation Submission.assignment 1 <-> * Assignment.submissions

relation Submission.parent ? <-> * Submission.children

IceDust: Grading Logic

Domain

- Client-side web programming

Design

- Web views as IceDust-style derived values

- Incremental update of view based on changes in model

Implementation

- Generate JavaScript code

- Strategy implementation based on static dependency analysis

Applications

- Small toy application(s)

PixieDust

PixieDust: Model & View

Research Challenges in
Compiler Construction

High-Level Declarative Language Definition

- Human readable / understandable definition

- Serves as reference documentation

Verification

- Automatically verify properties of language definition

- Type soundness of interpretation

- Type preservation of transformations

- Semantics preservation of transformation

Implementation

- Generate production quality tools from language definition

- Interpreter, compiler, IDE with refactoring, completion, …

- Correct-by-construction, high performance

Vision: Language Designer’s Workbench

High-Performance Parsing

- JSGLR2: 2x to 10x speed-up compared to JSGLR

- More speed-up possible?

- Explore effects of different parse table formats (LR, SLR, LALR)

Error Recovery & Error Messages

- Apply error recovery approach of [TOPLAS12] to JSGLR2

- Generate high quality error messages

Incremental Parsing

- Re-parse effort proportional to change of program text

- Approach: adapt Graham/Wagner algorithm to SGLR

Extensible Syntax

- Extend syntax during parsing to support extensible languages

Syntax

Code Completion

- Semantic code completion based on static semantics

Refactoring

- Sound refactoring scripts

- Refactoring based on scope graph program model

- New NWO MasCot project: programming and validating software restructurings

Live Language Development

- Immediate response after edit of language definition

- Requires: incremental evaluation of all compiler components

- Ongoing work: PIE DSL for interactive software development pipelines

Language Deployment

- Generate stand-alone language implementation: PIE partial evaluation

Workbench / Editor Services

Portable Editors

- Portable editor bindings based on AESI model (Pelsmaeker)

- Case study: bindings for Visual Studio, IntelliJ, LSP

Web Editors

- Generate language-specific editors for use in web browser

- Architectural questions

‣ All processing client-side? Stateful back-end on server? Scalability?

‣ Performance of Web Assembly (WASM) better than JS?

- Collaborative editing (operational transform)

Interactive Notebooks

- Combine documents with code in several languages and results of execution

Workbench / Editor Services

Specification of type systems with Statix

- Subset of CHR (Constraint Handling Rules) + domain-specific

constraints for scope graphs and relations

- Support more advanced type systems

- Structural types, polymorphism (generics), sub-typing [OOPSLA’18]

‣ Better encoding?

‣ Generalization (for parametric polymorphism)?

Solver

- Matrix-based name resolution algorithm?

- Correctness wrt resolution calculus?

- Scalability: modular and incremental analysis?

Statics with Statix

Substructural Type Systems

- Linear types

- Rust

Gradual Type Systems

- Gradual type theory: encode calculi and experiment

- Implement existing gradual type checkers

‣ Python, TypeScript, Dart, Hack

- Design gradual type system for Stratego

Dependent Types

- Agda, Idris

Exploring Type System Design Landscape

Program Model

- Extend term data model to incorporate scopes and types

- Persistent storage

- Query: retrieve information based on scope graph model

‣ All methods in class A

- Construction

‣ well-formed wrt static semantics

Random Program Generation

- Generation of well-formed and well-typed programs

- based on syntax + static semantics

- for testing compilers and other language processing tools

Syntax + Statics

Make all (meta) language processing incremental

- Effort proportional to size of change

Modular analysis out of the box

- Static analysis incremental based on (scope graph) dependencies

Compiler = build system

- Use PIE to glue together language processing pipelines

In progress

- Incremental parsing

- Incremental compilation for Stratego (in Beta)

- Incremental compilation for WebDSL

Theme: Incremental Compilation

Error Localization

- What program element is responsible for the failure?

- Minimal unsatisfiable core

‣ What is the smallest set of constraints that correspond to failure?

Error Diagnosis

- Generate good (understandable) explanation of error

- Based on unsat core

Theme: Error Localization and Diagnosis

Studying Programming
Languages

Compiler Construction B (Q2)

- Study back-end components of compiler

Software Verification (Q3)

- Learn the basics of mechanised verification with Agda dependently typed programming language

Web Programming Languages (Q3)

Language-Based Software Security (Q4)

Language Engineering Project (Q4)

- Develop a Spoofax language definition for an interesting language

Seminar Programming Languages (Q1)

- Read and discuss papers from the PL literature

System Validation (Q1)

- Check properties of (concurrent) software with model checking

Master Thesis Project in PL group

Courses

Oracle Labs (Zürich)

- Applications of Spoofax: GreenMarl, PGQL

- Other projects (Truffle/Graal)

Canon (Venlo)

- Designs and manufactures digital printers

- New project to investigate design of DSLs in digital printing domain

Philips (Best)

- Software restructuring

Other

- Opportunities for language design and implementation projects at other

companies

Industrial Internships

ACM Special Interest Group on Programming Languages

- http://sigplan.org/

Key SIGPLAN Conferences

- POPL: Principles of Programming Languages

- PLDI: Programming Language Design and Implementation

- ICFP: International Conference on Functional Programming

- OOPSLA/SPLASH: Systems, Programming Languages, and Applications

- SLE: Software Language Engineering

- GPCE: Generative Programming

Other Conferences

- ECOOP: European PL conference

- ESOP: European Symposium on Programming

Conferences

http://sigplan.org/

PLMW: Programming Languages Mentoring Workshop

- technical sessions on cutting-edge research in programming languages, and

mentoring sessions on how to prepare for a research career

- At ICFP, POPL, PLDI, SPLASH

OPLSS: Oregon Programming Languages Summer School

- Foundational work on semantics and type theory

- Adanced program verification techniques

- Experience with applying the theory

DSSS: DeepSpec Summer School

- Formal verification

PLISS: Programming Language Implementation Summer School

- Programming language systems, implementation, analysis

Summer Schools

PhD

- Dive into PL research for four years

- Develop new PL theory, designs, and implementations

- Write research papers and a dissertation

- Present your work at conferences around the world?

PL in industry

- Develop compilers, analyses, run-time systems

- Contribute to development of industrial programming languages

‣ Oracle Labs (PGX), Google (Dart), Amazon (Cloud9), Canon (OIL)

After the Master

Software Restructuring

- A principled approach to programming refactorings/restructurings

- Application: Transforming C++ code

Language Engineering

- Static semantics and type checking

- Deriving interpreters, compilers from dynamic semantics

Dependently Typed Programming

- Contributing to the semantics and implementation of Agda

Concurrency

Category Theory

Wanted: PhD Students in PL

Goal

- A collection of high quality syntax definitions for key languages

- Spoofax with `batteries included’

- Speeding up research case studies

Developing Syntax Definitions

- High quality

- High coverage

Research Assistant

- 4 - 8 hours per week (flexible)

- Appointment per project (language)

Wanted: Grammar Engineer

Academic Workflow Engineering

- Make university work better with web apps that automate workflows

- Education

‣ WebLab, mystudyplanning, EvaTool

- Research

‣ conf.researchr.org, researchr.org, mentoring

- Administration

Combine with PL research

- Use high-level web PLs (WebDSL, IceDust)

- Contribute to better abstractions for web programming

Wanted: Web Programmer

http://conf.researchr.org
http://researchr.org

Exam

October 28: Exam

- 13:30-16:30

January 21: Resit

- 13:30-16:30

Topics

- Everything we studied in the lectures

- Example exam questions

‣ homework assignments

‣ exam from last year

Exam and Resit

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

