CS4200-B: Compiler Construction Back-End

Eelco Visser

]
TUDelft

CS4200 | Compiler Construction | November 11, 2021

CS4200: Two Courses

CS4200-A: Front-End (5 ECTS)

- Syntax and Type Checking

- Project: Build front-end of compiler for ChocoPy in Spoofax
- Exam in October

CS4200-B: Back-End (5 ECTS)

- Analysis and Code Generation

- Project: Build back-end of compiler for ChocoPy in Spoofax
- Exam in January

Lecture Topics CS4200-B (Q2) (Tentative)

- Transformation

- Virtual Machines

- Code Generation

- Data-Flow Analysis

- Monotone Frameworks
- Register Allocation

- Memory Management

Communication

mattermost organization

#spoofax-users channel on research group Slack
- Where many Spoofax users hang out

- Ask questions about Spoofax

- (Not answers to assignments)

- No guarantee to quick response, or answer at all

- Send me an email if you want an invitation

ChocoPy: Project
L anguage

ChocoPy: A Typed Restricted Subset of Python 3

Binary-search trees ChocoPy is a programming language designed for classroom use in undergraduate compilers courses.
class TreeNode(object):

value:int = @
left:"TreeNode" = None language is fully specified using formal grammar, typing rules, and operational semantics. ChocoPy is used

right:"TreeNode™ = None to teach CS 164 at UC Berkeley. ChocoPy has been designed by Rohan Padhye and Koushik Sen, with

def insert(self:"TreeNode", x:int) — bool: substantial contributions from Paul Hilfinger.

if x < self.value:

if self.left is None: Atag]ance, ChocoPyis;
self.left = makeNode(x)

e_LS'::‘tU"“ True Familiar: ChocoPy programs can be executed directly in a Python (3.6+) interpreter. ChocoPy programs

return self.left.insert(x) can also be edited using standard Python syntax highlighting.

e'LlI P XS ;US:eHg :1?1;: .None : Safe: ChocoPy uses Python 3.6 type annotations to enforce static type checking. The type system
self.right = makeNode(x) supports nominal subtyping.
return True
else:
return self.right.insert(x) computer science. This can be a hugely rewarding exercise for students.
return False

ChocoPy is a restricted subset of Python 3, which can easily be compiled to a target such as RISC-V. The

Concise: A full compiler for ChocoPy be implemented in about 12 weeks by undergraduate students of

Expressive: One can write non-trivial ChocoPy programs using lists, classes, and nested functions. Such

def contains(self:"TreeNode", x:int) — bool: language features also lead to interesting implications for compiler design.
if x < self.value:

if self.left is None:
return False

else: the reference Python implementation on non-trivial benchmarks.
return self.left.contains(x)

elif x > self.value:

if self.right is None:
return False

else:
return self.right.contains(x)

tee: Source: https://chocopy.org/

Bonus: Due to static type safety and ahead-of-time compilation, most student implementations outperform

https://chocopy.org/

A Compiler and IDE for ChocoPy

(9 binary_tree.cpy 23\ (@ binary_tree.rv32im 23\

51 else: -equlv @SD?ké 9t : p
52 return self.root.contains(x) -equlv @print_string,
53 .equ%v @pr}nt_?har, 11
54 def makeNode(x: int) — TreeNode: -equiv @rint_int, 1

55 b:TreeNode = None .equ%v @ex1§2,t1? g
56 b = TreeNode() .equiv @read_string,

57 b.value = X .equiv @Fill_line_buffer, 18
58 return b -equlv @.__obj_size__, 4

59 .equiv @.__len__, 12

.equiv @.__int 12

.equiv @

ChocoPy IDE with syntax checking, syntax L. Compiler from ChocoPy to RISC-V (CS4200-B)

. . .equiv (@
Colorlng, type CheCklng (CS4200'A) .equiv @error_div_zero, 2
65 # Data -equiv @error_arg, %
66 t:Tree = None -0quly @error_oob,
- .equiv @error_none, 4
67 1:1nt 0) . 5
68 k:int = 37813 -equiv @error_oom,
69 .equ%v @efror_nyl, 6
70 # Crunch -equlv @LlistHeaderWords, 4
B .equiv (@bool.True, const_39
Y iv @ool.Fal t_38
72 while i < n: .equiv @bool.False, const_

73 t.insert/(k)|

74 k = (k * 37813) % 37831
75 if 1 % c = 0:

76 t.insert(i)

;Z teied 28 _ward 0

79 print(t.size) ‘2| binary_tree.result.txt 23\
80 1175

81 for i in [4, 8, 15, 16, 23, 42]: 215

B if temtaim(l): P Executing RISC-V with simulator

84 5

—’

.data

26 .globl $object$prototype
27 $object$prototype:

ChocoPy: Language Design and Implementation Documentation

ChocoPy v2.2: Language Manual and Reference

Designed by Rohan Padhye and Koushik Sen; v2 changes by Paul Hilfnger . .
ChocoPy v2.2: RISC-V Implementation Guide

University of California, Berkeley
University of California, Berkeley

November 23, 2019
October 31, 2019

Contents 1 Introduction

1 Introduction This document is intended to accompany the ChocoPy language reference manual, to serve as a

2 A tour of ChocoPy f:ti(;i (f;)l:tcc}s:izpers wishing to implement a ChocoPy compiler that targets the RISC-V instruction-
;; g‘\?sci(i)(]))nlsevel Specifically, this guide assists with the task of generating RV32IM! assembly code for a se-
93 mantically valid and well-typed ChocoPy program. This guide is not a complete specification; it

' is the developer’s responsibility to implement the full operational semantics listed in the language
24 manual. The design decisions described in this guide mirror the design of the official reference
2.5 implementation, which is not optimized for maximum performance. Developers are free to tweak

2.5.1 Integers any or all of these design choices.

2.5.2 Booleans
2.5.3 Strings .]
2.5.4 2 Naming conventions

2.5.5 Objects of user-defined classes _
256 The RISC-V assembly program generated for a ChocoPy program uses a single global namespace.

9.5.7 The empty list ([]) To ensure unique naming, each such program entity is referred to by its fully—qual%ﬁed name (FQN).
FQNs are defined as follows. A class with name C has a FQN of C. A global variable with name v
has FQN of v. A function f defined in global scope has a FQN of f. These names do not collide
since they are distinct in the global namespace of the ChocoPy program as well. A method m
defined in class C has FQN of C.m. A nested function g defined inside a function or method with
FQN F has a FQN of F.g. A local variable v defined in a function or method with FQN F has a
FQN of F.v. An attribute a defined in a class C has a FQN of C.a. As an example, consider the
program:

Expressions

2.6.1 Literals and identifiers
2.6.2 List expressions

2.6.3 Arithmetic expressions
2.6.4 Logical expressions
2.6.5 Relational expressions
2.6.6 Conditional expressions
2.6.7 Concatenation expressions class C(object):

2.6.8 Access expressions def f(self:"C") -> int:
2.6.9 Call expressions
Type annotations
Statements return x

2.8.1 Expression statements return g()

2.8.2 Compound statements: conditionals and loops cO.£0

2.8.3 Assignment statements

2.8.4 Pass statement Here, the local variable x has a FQN of C.f.g.x.
2.8.5 Return statement

2.8.6 Predefined classes and functions

def g() -> int:
X:int = 1

'RV32IM is the 32-bit version of RISC-V with integer-only arithmetic, including multiplication (and division)
instructions.

Nano-Pass Compiler
Architecture

Nano-pass approach to constructing a compiler back-end.

https://wphomes.soic.1indiana.edu/jsiek/

https://www.dropbox.com/s/ktdw83j0adcc44rd/book.pdf?dl=1

Essentials of Compilation
The Incremental, Nano-Pass Approach

JEREMY G. SIEK
Indiana University

with contributions from:
Carl Factora
Andre Kuhlenschmidt
Ryan R. Newton
Ryan Scott
Cameron Swords
Michael M. Vitousek
Michael Vollmer

OCaml version:

Andrew Tolmach
(with inspiration from a Haskell version by lan Winter)

April 19, 2021

Program Transformation by Term Rewriting

Eelco Visser

]
TUDelft

CS4200 | Compiler Construction | November 11, 2021

This Lecture

Source Abstract Abstract
Code Syntax Syntax
Editor Tree Tree

Define transformations on abstract syntax trees (terms) using rewrite rules

Reading Material

The following papers add background, conceptual exposition,
and examples to the material from the slides. Some notation and
technical details have been changed; check the documentation.

Term rewrite rules define transformations on (abstract syntax)
trees. Traditional rewrite systems apply rules exhaustively. This
paper introduces programmable rewriting strategies to control
the application of rules, the core of the design of the Stratego

transformation language.

Note that the notation for contextual rules is no longer
supported by Stratego. However, the technigue to implement

contextual rules still applies.

ICFP 1998

https://do1l.org/10.1145/291251.289425

Building Program Optimizers with Rewriting Strategies*

Eelco Visser!, Zine-el-Abidine Benaissa', Andrew Tolmach!+?
Pacific Software Research Center

! Dept. of Comp. Science and Engineering, Oregon Graduate Institute, P.O. Box 91000, Portland, Oregon 97291-1000, USA
2 Dept. of Computer Science, Portland State University, P.O. Box 751, Portland, Oregon 97207 USA
visser@acm.org, benaissa@cse.ogi.edu, apt@cs.pdx.edu

Abstract

We describe a language for defining term rewriting strate-
gies, and its application to the production of program op-
timizers. Valid transformations on program terms can be
described by a set of rewrite rules; rewriting strategies are
used to describe when and how the various rules should be
applied in order to obtain the desired optimization effects.
Separating rules from strategies in this fashion makes it eas-
ier to reason about the behaviof of the optimizer as a whole,
compared to traditional monolithic optimizer implementa-
tions. We illustrate the expressiveness of our language by
using it to describe a simple optimizer for an ML-like inter-
mediate representation.

The basic strategy language uses operators such as se-
quential composition, choice, and recursion to build trans-
formers from a set of labeled unconditional rewrite rules.
We also define an extended language in which the side-
conditions and contextual rules that arise in realistic opti-
mizer specifications can themselves be expressed as strategy-
driven rewrites. We show that the features of the basic and
extended languages can be expressed by breaking down the
rewrite rules into their primitive building blocks, namely
matching and building terms in variable binding environ-
ments. This gives us a low-level core language which has a
clear semantics, can be implemented straightforwardly and
can itself be optimized. The current implementation gener-
ates C code from a strategy specification.

1 Introduction

Compiler components such as parsers, pretty-printers and
code generators are routinely produced using program gen-
erators. The component is specified in a high-level lan-
guage from which the program generator produces its imple-
mentation. Program optimizers are difficult labor-intensive
components that are usually still developed manually, de-
spite many attempts at producing optimizer generators
(e.g., [19, 12, 28, 25, 18, 11]).

*This work was supported, in part, by the US Air Force Materiel
Command under contract F19628-93-C-0069 and by the National Sci-
ence Foundation under grant CCR-9503383.

Parmission 1o make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made of distnbuted for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, 10 republish, to post on servers or to

redistribute to lists, requives prior specific permission and/or a fee.

ICFP '98 Baltimore, MD USA

© 1998 ACM 1-58113.024.4/98/0009...$5.00

A program optimizer transforms the source code of a
program into a program that has the same meaning, but is
more efficient. On the level of specification and documenta-
tion, optimizers are often presented as a set of correctness-
preserving rewrite rules that transform code fragments into
equivalent more efficient code fragments (e.g., see Table 5).
This is particularly attractive for functional language com-
pilers (e.g., [3, 4, 24]) that operate via successive small trans-
formations, and don’t rely on analyses requiring significant
auxiliary data structures. The paradigm provided by con-
ventional rewrite engines is to compute the normal form of
a program with respect to a set of rewrite rules. However,
optimizers are usually not implemented in this way. In-
stead, an algorithm is produced that implements a strategy
for applying the optimization rules. Such a strategy con-
tains meta-knowledge about the set of rewrite rules and the
programming language they are applied to in order to (1)
control the application of rules; (2) guarantee termination
of optimization; (3) make optimization more efficient.

Such an ad-hoc implementation of a rewriting system
has several drawbacks, even when implemented in a lan-
guage with good support for pattern matching, such as ML
or Haskell. First of all, the transformation rules are em-
bedded in the code of the optimizer, making them hard to
understand, to maintain, and to reuse individual rules in
other transformations. Secondly, the strategy is not speci-
fied at the same level of abstraction as the transformation
rules, making it hard to reason about the correctness of the
optimizer even if the individual rules are correct. Finally,
the host language has no awareness of the transformation
domain underlying the implementation and can therefore
not use this domain knowledge to optimize the optimizer
itself.

It would be desirable to apply term rewriting technol-
ogy directly to produce program optimizers. However, the
standard approach to rewriting is to provide a fixed strategy
(e.g., innermost or outermost) for normalizing a term with
respect to a set of user-defined rewrite rules. This is not
satisfactory when—as is usually the case for optimizers—
the rewrite rules are neither confluent nor terminating. A
common work-around is to encode a strategy into the rules
themselves, e.g., by using an explicit function symbol that
controls where rewrites are allowed. But this approach has
the same disadvantages as the ad-hoc implementation of
rewriting described above: the rules are hard to read, and
the strategies are still expressed at a low level of abstraction.

In this paper we argue that a better solution is to use
explicit specification of rewriting strategies. We show how

Stratego/XT combines SDF2 and Stratego into toolset for
program transformation.

This paper gives a high-level overview of the concepts.

The StrategoXT.jar is still part of the Spoofax distribution.

Lecture Notes in Computer Science 2003

https://doi.org/10.1007/978-3-540-25935-0_13

Program Transformation with Stratego/XT
Rules, Strategies, Tools, and Systems in Stratego/XT 0.9

Eelco Visser

Institute of Information and Computing Sciences, Utrecht University
P.O. Box 80089 3508 TB, Utrecht, The Netherlands
visser@Qacm.org
http://www.stratego-language.org

Abstract. Stratego/XT is a framework for the development of transformation
systems aiming to support a wide range of program transformations. The frame-
work consists of the transformation language Stratego and the XT collection of
transformation tools. Stratego is based on the paradigm of rewriting under the
control of programmable rewriting strategies. The XT tools provide facilities
for the infrastructure of transformation systems including parsing and pretty-
printing. The framework addresses the entire range of the development process;
from the specification of transformations to their composition into transformation
systems. This chapter gives an overview of the main ingredients involved in the
composition of transformation systems with Stratego/XT, where we distinguish
the abstraction levels of rules, strategies, tools, and systems.

1 Introduction

Program transformation, the automatic manipulation of source programs, emerged in
the context of compilation for the implementation of components such as optimiz-
ers [28]. While compilers are rather specialized tools developed by few, transformation
systems are becoming widespread. In the paradigm of generative programming [13],
the generation of programs from specifications forms a key part of the software engi-
neering process. In refactoring [21], transformations are used to restructure a program
in order to improve its design. Other applications of program transformation include
migration and reverse engineering. The common goal of these transformations is to
increase programmer productivity by automating programming tasks.

With the advent of XML, transformation techniques are spreading beyond the area
of programming language processing, making transformation a necessary operation in
any scenario where structured data play a role. Techniques from program transformation
are applicable in document processing. In turn, applications such as Active Server Pages
(ASP) for the generation of web-pages in dynamic HTML has inspired the creation
of program generators such as Jostraca [31], where code templates specified in the
concrete syntax of the object language are instantiated with application data.

Stratego/XT is a framework for the development of transformation systems aiming
to support a wide range of program transformations. The framework consists of the
transformation language Stratego and the XT collection of transformation tools. Strat-
ego is based on the paradigm of rewriting under the control of programmable rewrit-
ing strategies. The XT tools provide facilities for the infrastructure of transformation

C. Lengauer et al. (Eds.): Domain-Specific Program Generation, LNCS 3016, pp. 216-238, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Spoofax combines SDF2 and Stratego into a language
workbench, i.e. an IDE for creating language definition from
which IDEs for the defined languages can be generated.

A distinctive feature of Spoofax is live language development,
which supports developing a language definition and programs
In the defined language in the same IDE instance.

Spoofax was developed for Eclipse, which is still the main

development platform. However, Spoofax Core is now
independent of any IDE.

Note that the since the publication of this paper, we have
introduced more declarative approaches to name and type
analysis, which will be the topic of the next lectures.

OOPSLA 2010

https://doi.org/10.1145/1932682.1869497

The Spoofax Language Workbench

Rules for Declarative Specification of Languages and IDEs

Lennart C. L. Kats

Delft University of Technology
l.c.l.Lkats@tudelft.nl

Abstract

Spoofax is a language workbench for efficient, agile devel-
opment of textual domain-specific languages with state-of-
the-art IDE support. Spoofax integrates language processing
techniques for parser generation, meta-programming, and
IDE development into a single environment. It uses concise,
declarative specifications for languages and IDE services. In
this paper we describe the architecture of Spoofax and in-
troduce idioms for high-level specifications of language se-
mantics using rewrite rules, showing how analyses can be
reused for transformations, code generation, and editor ser-
vices such as error marking, reference resolving, and content
completion. The implementation of these services is sup-
ported by language-parametric editor service classes that can
be dynamically loaded by the Eclipse IDE, allowing new
languages to be developed and used side-by-side in the same
Eclipse environment.

Categories and Subject Descriptors D.2.3 [Software En-
gineering): Coding Tools and Techniques; D.2.6 [Software
Engineering]: Programming Environments

General Terms Languages
1. Introduction

Domain-specific languages (DSLs) provide high expressive
power focused on a particular problem domain [38, 47].
They provide linguistic abstractions over common tasks
within a domain, so that developers can concentrate on ap-
plication logic rather than the accidental complexity of low-
level implementation details. DSLs have a concise, domain-
specific notation for common tasks in a domain, and al-
low reasoning at the level of these constructs. This allows
them to be used for automated, domain-specific analysis,
verification, optimization, parallelization, and transforma-
tion (AVOPT) [38].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA/SPLASH’'10, October 17-21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0203-6/10/10...$10.00

Eelco Visser

Delft University of Technology
visser@acm.org

For developers to be productive with DSLs, good in-
tegrated development environments (IDEs) for these lan-
guages are essential. Over the past four decades, IDEs have
slowly risen from novelty tool status to becoming a funda-
mental part of software engineering. In early 2001, IntelliJ
IDEA [42] revolutionized the IDE landscape [17] with an
IDE for the Java language that parsed files as they were typed
(with error recovery in case of syntax errors), performed se-
mantic analysis in the background, and provided code nav-
igation with a live view of the program outline, references
to declarations of identifiers, content completion proposals
as programmers were typing, and the ability to transform
the program based on the abstract representation (refactor-
ings). The now prominent Eclipse platform, and soon af-
ter, Visual Studio, quickly adopted these same features. No
longer would programmers be satisfied with code editors
that provided basic syntax highlighting and a “build” button.
For new languages to become a success, state-of-the-art IDE
support is now mandatory. For the production of DSLs this
requirement is a particular problem, since these languages
are often developed with much fewer resources than general
purpose languages.

There are five key ingredients for the construction of a
new domain-specific language. (1) A parser for the syntax
of the language. (2) Semantic analysis to validate DSL pro-
grams according to some set of constraints. (3) Transfor-
mations manipulate DSL programs and can convert a high-
level, technology-independent DSL specification to a lower-
level program. (4) A code generator that emits executable
code. (5) Integration of the language into an IDE.

Traditionally, a lot of effort was required for each of these
ingredients. However, there are now many tools that support
the various aspects of DSL development. Parser generators
can automatically create a parsers from a grammar. Mod-
ern parser generators can construct efficient parsers that can
be used in an interactive environment, supporting error re-
covery in case of syntax-incorrect or incomplete programs.
Meta-programming languages [3, 10, 12, 20, 35] and frame-
works [39, 57] make it much easier to specify the semantics
of a language. Tools and frameworks for IDE development
such as IMP [7, 8] and TMF [56], simplify the implemen-
tation of IDE services. Other tools, such as the Synthesizer

f
{S} Spoofax & Q search ;po? at:,f »

Documentation for Stratego at
the Spcofax.dev Websrte. Home Tutorials How-Tos References Background Support Releases

References Table of contents

Stratego

Configuration Placeholder Convention
Syntax Not in Reference Manual
Static Semantics The Stratego language caters for the definition of program transformations. Concrete Syntax

Data Flow Analysis Library

Transformations operate on the abstract syntax trees of programs. Abstract syntax trees are
Transformation) Source
represented by means of first-order terms.

Lexical
Modules A program is structured as a collection of modules, which may import each other.

Terms
. Transformations are defined by means of named rewrite rules. Rules may explicitly invoke rules.
ypes . . : . . .
Alternatively, rules may be invoked by strategies that define how to combine rules into a more

Rewrite Rules . . . " .
complex transformation using strategy combinators. Context-sensitive transformations can be

Strategy Definitions . . .
expressed using dynamic rewrite rules.
Strategy Combinators

Dynamic Rules Starting with Stratego 2, terms and transformation strategies are (gradually) typed.

Troubleshooting
Testing .
Placeholder Convention

Editor Services

Pipelines In this reference manual we use placeholders to indicate the syntactic structure of language
constructs. For example, a rewrite rule has the form

$Label :
$Term — $Term

in which the $Label is the name of the rule, the first $Term the left-hand side, and the second
the right-hand side of the rule. This convention should give an indication of the formal structure
of a construct, without going down to the precise details of the syntax definition. As a side
effect, the schema also shows the preferred indentation of language constructs where that is

https://www.spoofax.dev/references/stratego/

http://www.spoofax.dev

Fundamenta Informaticae 69 (2006) 123178
10S Press

This paper defines the formal semantics of the full Stratego

language, including its scoped dynamic rules feature.
Program Transformation with Scoped Dynamic Rewrite Rules

Martin Bravenboer, Arthur van Dam, Karina Olmos and Eelco Visser”
Depariment of Information and Computing Sciences

Universiteit Umrecht, P.O. Box 80089, 3508 TB Umrecht

The Netherlands

visser@acm.org

These slides document most features of the base language
without dynamic rules and without giving the formal
semantics.

Abstract. The applicability of term rewriting to program transformation is limited by the lack of
control over rule application and by the context-free nature of rewrite rules. The first problem is
addressed by languages supporting user-definable rewriting strategies. The second problem is ad-
dressed by the extension of rewriting strategies with scoped dynamic rewrite rules. Dynamic rules
are defined at run-time and can access variables available from their definition context. Rules defined
within a rule scope are automatically retracted at the end of that scope. In this paper, we explore
the design space of dynamic rules, and their application to transformation problems. The technique
1s formally defined by extending the operational semantics underlying the program transformation
language Stratego, and illustrated by means of several program transformations in Stratego, includ-
ing constant propagation, bound variable renaming, dead code elimination, function inlining, and
function specialization.

1. Introduction

Program transformation is the mechanical manipulation of a program in order to improve it relative to
some cost function €' such that C'(FP) > C(tr(FP)), 1.e. the cost decreases as a result of applying the
transformation [30, 29, 11]. The cost of a program can be measured in different dimensions such as
performance, memory usage, understandability, flexibility, maintainability, portability, correctness, or
satisfaction of requirements. Related to these goals, program transformations are applied in different
settings: e.g. compiler optimizations improve performance [24] and refactoring tools aim at improving
understandability [28, 14]. While transformations can be achieved by manual manipulation of programs,
in general, the aim of program transformation is to increase programmer productivity by automating

If you Want to dig deeper *Address for correspondence: Department of Information and Computing Sciences, Universiteit Utrecht, P.O. Box 80089, 3508

TB Utrecht, The Netherlands

This paper introduces a gradual type system for Stratego,
which is available as Stratego2 in Spoofax3

https://doi.org/10.1145/3426425.3426928

Gradually Typing Strategies

Jeff Smits
Delft University of Technology
The Netherlands
j.smits-1@tudelft.nl

Abstract

The Stratego language supports program transformation
by means of term rewriting with programmable rewriting
strategies. Stratego’s traversal primitives support concise
definition of generic tree traversals. Stratego is a dynamically
typed language because its features cannot be captured fully
by a static type system. While dynamic typing makes for
a flexible programming model, it also leads to unintended
type errors, code that is harder to maintain, and missed
opportunities for optimization.

In this paper, we introduce a gradual type system for
Stratego that combines the flexibility of dynamically typed
generic programming, where needed, with the safety of stat-
ically declared and enforced types, where possible. To make
sure that statically typed code cannot go wrong, all access
to statically typed code from dynamically typed code is pro-
tected by dynamic type checks (casts). The type system is
backwards compatible such that types can be introduced
incrementally to existing Stratego programs. We formally
define a type system for Core Gradual Stratego, discuss its
implementation in a new type checker for Stratego, and
present an evaluation of its impact on Stratego programs.

CCS Concepts: » Software and its engineering — Seman-
tics; Polymorphism; Extensible languages.

Keywords: gradual types, strategy, generic programming,
type preserving

ACM Reference Format:

Jeff Smits and Eelco Visser. 2020. Gradually Typing Strategies. In
Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering (SLE '20), November 16-17, 2020,
Virtual, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3426425.3426928

1 Introduction

The Stratego language supports program transformation
by means of term rewriting with programmable rewriting

This work is licensed under a Creative Commons Attribution International 4.0 License.

SLE 20, November 16—17, 2020, Virtual, USA

® 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8176-5/20/11.
https://doi.org/10.1145/3426425.3426928

Eelco Visser
Delft University of Technology
The Netherlands
e.visser@tudelft.nl

strategies [30]. Stratego’s traversal primitives support con-
cise definition of generic tree traversals. For example, the
definition of bottomup(s) in Figure 4 defines in one line a
generic bottom-up traversal that can be instantiated with a
selection of rewrite rules to be applied in a particular trans-
formation, without needing to define a traversal for each
constructor in the abstract syntax. Stratego is used in the
Stratego/XT program transformation tool suite [2] and the
Spoofax language workbench [11] and used in production
in research, education, and industry [6, 12].

Stratego is a dynamically typed language, because its lan-
guage features cannot be captured fully by a static type
system. While dynamic typing makes for a flexible program-
ming model, it also exposes Stratego programmers to un-
intended type errors. Static typing of strategies has been
considered before by Limmel and Visser [16], Limmel [14],
and others. Limmel and Jones [15] adopted Stratego’s strate-
gic programming in the SYB Haskell design pattern. These
efforts focus on the statically typable fragment of strategies,
making them unsuitable, as is, as a type system for Stratego.
Furthermore, there is a considerable base of existing Stratego
code, and having to convert that, at once, to statically typed
code would preclude adoption of a type system.

In this paper, we introduce a gradual type system for
Stratego that combines the flexibility of dynamically typed
generic programming, where needed, with the safety of stat-
ically declared and enforced types, where possible. We inte-
grate ideas for statically typing strategies by Lammel [14]
with ideas from the gradual typing literature [24, 25]. In
particular, we extend conventional static types with the spe-
cial type for type preserving transformations [14]. And we
introduce a dynamic type in the tradition of gradual type
systems to account for, as yet, untyped code. At the interface
of statically and dynamically typed code, the type checker
inserts dynamic type checks (through casts and proxies) to
guarantee the assumptions of static code. This ensures that
the type system is backwards compatible such that existing
code can pass the type checker as is, and such that types
can be introduced incrementally to existing code. At the in-
tersection of typed strategies and gradual types, we find an
interesting dynamic types for strategies. For example, the
type unifying strategies of Limmel [14] do not need a special
type, but can be modeled with a dynamic input type and a
specific result type.

Transformation
Architecture

This presentation uses the Stratego Shell for explaining the behavior of
Stratego programs. The Stratego Shell is currently not supported by Spoofax

Architecture of Stratego/XT

syntax definition

parser tree grammar pretty-printer
generator generator generator

tree ' pretty-print |

parse table grammar table

e

w *> pretty-print

|
program program

Programs as Terms

“Plus -
~Call -

= 0@ =

Trees are represented as terms in the ATerm format

Plus(Int("4"), Call("f", [Mul(Int("5"), Var("x"))]1))

ATerm Format

Application Void (), Call(t, t)
List (1, [¢t, t, t]
Tuple (t, t), (t, t, t)
Integer 25

Real 38.87

String "Hello world"
Annotated term t{t, t, t}

e Exchange of structured data
o Efficiency through maximal sharing

e Binary encoding

Structured Data: comparable to XML
Stratego: internal is external representation

How to Realize Program Transformations?

program program

I

pretty-print

Term Rewriting

Conventional Term Rewriting

e Rewrite system = set of rewrite rules

o Redex = reducible expression

e Normalization = exhaustive application of rules to term
* (Stop when no more redices found)

e Strategy = algorithm used to search for redices

e Strategy given by engine
Strategic Term Rewriting

e Select rules to use in a specific transformation
e Select strategy to apply
e Define your own strategy if necessary

e Combine strategies

Transformation Strategies

A transformation strategy

e transforms the current term into a new term or fails
® may bind term variables
e may have side-effects (1/O, call other process)

e is composed from a few basic operations and combinators

Transformation Strategies

A transformation strategy

e transforms the current term into a new term or fails
® may bind term variables
* may have side-effects (1/O, call other process)

e is composed from a few basic operations and combinators

Stratego Shell: An Interactive Interpreter for Stratego

<current term>

Transformation Strategies

A transformation strategy

e transforms the current term into a new term or fails
® may bind term variables
* may have side-effects (1/O, call other process)

e is composed from a few basic operations and combinators

Stratego Shell: An Interactive Interpreter for Stratego

<current term>
stratego> <strategy expression>
<transformed term>

Transformation Strategies

A transformation strategy

e transforms the current term into a new term or fails
® may bind term variables
* may have side-effects (1/O, call other process)

iIs composed from a few basic operations and combinators

Stratego Shell: An Interactive Interpreter for Stratego

<current term>

stratego> <strategy expression>
<transformed term>

stratego> <strateqy expression>
command failed

Parsing: From Text to Terms

Let(
[FunDec(
"fact"
, [FArg("n", Tp(Tid("int")))]
, Tp(Tid("int"))
, If(
Lt(Var("n"), Int("1"))
, Int("1")
, Seq(

: . o _ [Times(
let function fact(n : int) : int = Var("n")

if n < 1 then 1 else (n * fact(n - 1)) Call(

in fact(10) Var("fact")
end , [Minus(vVar("n"), Int("1"))]

[Call(Var("fact"), [Int("10")])]

Syntax of Terms

module Terms Zero()

sorts Cons Term Succ(Zero())

Cons(A(), Cons(B(), Nil()))

lexical syntax

Cons = [a-zA-Z][a-zA-7Z0-9]*

context-free syntax

Term.App = <<Cons>(<{Term ", "}*>)>

Syntax of Terms

module Terms Zero()

sorts Cons Term Succ(Zero())

[AC), B()]

lexical syntax
Cons = [a-zA-Z][a-zA-70-9]*

context-free syntax

<<Cons>(<{Term ", "}*>)>
<[<{Term ", "}4>]>
<(<{Term ", "}*>)>

Term.App
Term.L1ist
Term.Tuple

Syntax of Terms

module ATerms 0

1

[AC), B()]
Var‘(“X\\")

sorts Cons Term

lexical syntax
Cons
Cons
Int
String

[a-zA-Z][a-zA-Z0-9]*
String

[0-9]+

||\|| n Str‘ingChar‘* ||\|| n
~[\"\\n]

"N\ LN

Let(
[Decl(“x"”, IntT()),
Decl(”y"”, BoolT())

]
, Eg(Var(“x'"), Int(0®))

StringChar
StringChar

context-free syntax
Term.Str = <<String>>
Term.Int <<Int>>
Term.App <<Cons>(<{Term ", "}*>)>
Term.List <[<{Term ", "}4>]>
Term.Tuple <(<{Term ", "}*x>)>

)

Syntax of A(nnotated) Terms

Var(“x”"){Type(IntT())}

module ATerms

sorts Cons Term

lexical syntax
Cons = [a-zA-Z][a-zA-70-9]*
// more lexical syntax omitted

context-free syntax

Term.Anno <<PreTerm>{<{Term *,6 "}*x>}>
Term <<PreTerm>>

<<String>>

<<Int>>

<<Cons>(<{Term ","}*>)>
<[<{Term ", "}4>]>
<(<{Term ", "}*>)>

PreTerm.Str
PreTerm.Int
PreTerm.App
PreTerm.L1st
PreTerm. Tuple

Signatures

Signatures

Signature declares argument and

return types of term constructors
context-free syntax signature
constructors

Exp.Uminus [- [Exp Uminus

EXp.
.Times
EXp.
EXp.
EXp.
EXp.
EXp.
EXp.
EXp.
EXp.
EXp.
EXp.
EXp.
. True
EXp.
.And

EXp

EXp

EXp

EXp.

Signature is automatically generated

Power

Divide
Plus
Minus
CPlus
CMinus
Eq

Neqg

Gt

Lt

Geqg
Leq

False

Or

[[Exp]
[[Exp]
[[Exp]
[[Exp]
[[Exp]
[[Exp]
[[Exp]
[[Exp]
[[Exp]
[[Exp]
[[Exp]
[[Exp]
[[Exp]
<true>

<false>

1]
K%

>
<

[Exp]]
[Exp]]
[Exp]]
[Exp]]
[Exp]]
[Exp]]
[Exp]]
[Exp]]
[Exp]]
[Exp]]
[Exp]]
[Exp]]
[Exp]]

[[Exp] & [Expl]

[[Exp]

[Exp]]

from SDF3 productions

Power
Times
Divide
PlLus
Minus
CPlus
CMinus
Eq

Neg

Gt

Lt

Geqg
Leq
True
False
And

Or

% ok ok ok ok ok ok K K K ¥ ¥ *

R A AR

R

Stratego compiler only checks arity

of constructor applications

Rewrite Rules

Desugaring

if x then 1f x then
printint(x)

printint(x)

Call(

"printint" "printint"
, [VaP("X")] [VaP("X")]
)

pattern matching pattern instantiation

desugar: IfThen(el, e2) — IfThenElse(el, e2, NoVal())

Lists of Elselfs

signature
constructors
If : Exp * Exp * List(ElseIf) — Exp
Elself : Exp * Exp — Elself

IfThen : Exp * Exp * Exp — EXp

If(c, el, [Desugar :
ElseIf(c2, e2), If(c, e, []1) — IfThen(c, e, Noval())
ElseIf(c3, e3),

" Desugar :
1) If(c, e, [ElseIf(c2, e2) | es]) — IfThen(c, e, If(c2, e2, es)

More Desugaring

signature desugar: Uminus(e) — Bop(MINUS(), Int("0"), e)
constructors
PLUS: BinOp desugar: Plus(el, e2) — Bop(PLUS(), el, e2)
MINUS: BinOp desugar: Minus(el, e2) — Bop(MINUS(), el, e2)
MUL: BinOp desugar: Times(el, e2) — Bop(MUL(), el, e2)
DIV: BinOp desugar: Divide(el, e2) — Bop(DIV(), el, e2)

EQ: Re’ desugar: Eq(el, e2) Rop(EQ(), el, e2)
NE: Re’ desugar: Neqg(el, e2) ROP(NE(), el, e2)
LE: Re’ desugar: Leq(el, e2) ROp(LE(), el, e2)
LT: Re’ desugar: Lt(el, e2) ROp(LT(), el, e2)

desugar: Geq(el, e2) ROp(LE(), e2, el)
Bop: BinOp * Expr * Expr — Expr desugar: Gt(el, e2) Rop(LT(), e2, el)
Rop: RelOp * Expr * Expr — EXxpr

desugar: And(el, e2) IfThenElse(el, e2, Int("0"))
desugar: 0Or(el, e2) IfThenElse(el, Int("1"), e2)

Constant Folding

X =21 + 21 + X X = 42 + X

Assign(Assign(
Var("x") Var("x")
, Plus(- Plus(
Plus (Int("42")
Int("21") . Var("x")
o Int("21"))
))
. Var("x")
)
)

eval: Plus(Int(il), Int(i2)) — Int(i3)
where <addS> (i1, i2) = i3

: Rop(NE(),
: Rop(NE(),

: Rop(LT(),
: Rop(LT(),

: Rop(LEQ),
: Rop(LEQ),

More Constant Folding

: Rop(EQ(), Int(i), Int(i))
: Rop(EQQ),

Int(il),

Int(i), Int(i))

Int(il),

Int(il),
Int(il),

Int(il),
Int(il),

: Bop(PLUS(), Int(il), Int(i2))
: Bop(MINUS(), Int(il1l), Int(i2))
: Bop(MUL(), Int(il), Int(i2))

: Bop(DIV(), Int(il), Int(i2))

Int(i2))

Int(i2))

Int(i2))
Int(i2))

L Ll Il 1

Int(i2))
Int(i2))

Int(<addS> (i1, i2))

%
— Int(<subtS> (i1, i2))
%

Int(<mulS> (i1, i2))

— Int(<divS> (i1, i2))

Int("1")
Int("0")

Int("0")
Int(nlu)

Int("1")
Int("0")

Int("1")
Int("@")

where

where

where
where

where
where

not(<eg> (i1, i2))

not(<eq> (i1, i2))

<1tS> (i1, i2)
not(<1tS> (i1, i2))

<leqS> (i1, i2)
not(<leqS> (i1, i2))

Application:
Formatting

module pp/Tiger-parenthesize

imports
strategolib
signatures/-

strategies

parenthesize-Tiger =
innermost(TigerParenthesize)

context-free priorities

Exp.And

> Exp.Or

> EXp.Array
> Exp.Assign
>

Tiger: Parenthesize

rules

TigerParenthesize :
or(t_0, t_1) — 0or(t_0, Parenthetical(t_1))
where <(?For(_, _, _, _)

+

While(_, _)
?IfThen(_,
PIF(_, _, _)

?Assign(_, _

?Array(_, _,
20r(_, _)
fail)> t_ 1

TigerParenthesize :
And(t_0, t_1) — And(Parenthetical(t_0), t_1)
where <(?For(_, _, _, _)

+

While(_, _)
?IfThen(_,
PIF(, _, _)

?Assign(_, _

?Array(_, _,
20r(_, _)
fail)> t_ 0

_)

)
_)

_)

)
_)

pp/Tiger-parenthesize.str

Tiger: Pretty-Print Rules

rules
prettyprint-Tiger-Exp :
If(t1_, t2_, t3_) — [H(

[SOpt(HS(), "0")]

, [s("if ")
, t1_!
, S(" then")
]

)

context-free syntax

t2_ "
H(

Exp.If = <
[SOpt(HS(), "0")]

if <Exp> then

, [S("else")]
)
, t3__ '
]
with t1__ ' := <pp-one-Z(prettyprint-Tiger-Exp)
<+ pp-one-Z(prettyprint-completion-aux)> t1__
with t2__ ' := <pp-indent(]|"2")> [
<pp-one-Z(prettyprint-Tiger-Exp)
<+ pp-one-Z(prettyprint-completion-aux)> t2__
with t3__' := <pp-indent(["2")> [
<pp-one-Z(prettyprint-Tiger-Exp)
<+ pp-one-Z(prettyprint-completion-aux)> t3__

<Exp>
else
<Exp>

Application:
Desugaring

Tiger: Desugaring

function printboard() = (
let
var 1 : int = 0
in
while i < N - 1 do ((
let
var j : int = 0
: : in
Mor 1 0 to N1 do (G et -5
for j := 0 to N-1 do pPlnt(lf"CO}[l] - rher
print(if col[i]=j then " 0" else " ."); else0
print("\n") ROF
); -

print("\n"))

end;
print("\n")

j =3 + 1
)

);
1

)

end;
print("\n")

= 1 + 1

Expressing for 1n terms of while++

Tiger: Desugaring Transformation

module desugar

imports signatures/Tiger-sig
imports ..
strategies

desugar-all = topdown(try(desugar))
rules

desugar :

For(
Var(1i)

[VarDec(1, Tid("int"), el)]
, [While(
Lt(Var(1), e2)
, Seq(
[e_body

, Assign(Var(i), Plus(Var(i), Int("1")))

Application:
Completion

context-free syntax

Exp.If = <
1f <Exp> then
<Exp>
else
<Exp>

Tiger: Completion Rules

syntax/Control-Flow.sdf3

rules

suggest-completions(lcompletions):
Exp-PLlhdr() -> <add-completions(

I ("I_F"

, 1f(

<try(inline-completions(lExp-Plhdr()))> Exp-Plhdr()
, <try(inline-completions(lExp-Plhdr()))> Exp-Plhdr()
, <try(inline-completions(lExp-Plhdr()))> Exp-Plhdr()

)
)
)

; fail> completions

completion/Control-Flow-cp.str

Combining Rewrite
Rules with Strategies

Naming and Composing Strategies

Reuse of transformation requires definitions

1. Naming strategy expressions

2. Named rewrite rules

3. Reusing rewrite rules through modules

Simple strategy definition and call
e Syntax: f = s
e Name strategy expression s
e Syntax: f

* Invoke (call) named strategy f

Plus(Var("a"),Int("3"))

stratego> SwapArgs = {el,e2:(Plus(el,e2) -> Plus(e2,el))}
stratego> SwapArgs
Plus(Int("3"),Var("a"))

Named Rewrite Rules

Named rewrite rules (sugar)

e Syntax: f : pl -> pr where s

e Name rewrite rule p1 -> pr where s

e Equivalent to: f = {x1,...,x,: (p1 => po where s)}
(with x1,...,x, the variables in p;, p2, and s)

Plus(Var("a"),Int("3"))

stratego> SwapArgs : Plus(el,e2) -> Plus(e2,el)
stratego> SwapArgs

Plus(Int("3"),Var("a"))

Example: Inverting If Not Equal

if(x 1= y) if(x == y)
doSomething () ; doSomethingElse () ;
else else
doSomethingElse () ; doSomething() ;

InvertIfNot
If (NotEq(el, e2), stml, stm2) ->
If (Eq(el, e2), stm2, stml)

Modules with Reusable Transformation Rules

module Simplification-Rules
rules
PlusAssoc :

Plus(Plus(el, e2), e3) -> Plus(el, Plus(e2, e3))

EvalIf :
If (Lit(Bool(True())), stml, stm2) -> stml

Evallf :
If (Lit(Bool (False())), stml, stm2) -> stm2

IntroduceBraces :
If(e, stm) -> If(e, Block([stm]))
where <not(?Block(_))> stm

stratego> 1mport Simplification-Rules

Composing Strategies

Rules define one-step transformations

Program transformations require many one-step
transformations and selection of rules

1. Choice
2. ldentity, Failure, and Negation

3. Parameterized and Recursive Definitions

Composing Strategies

Deterministic choice (left choice)
e Syntax: s; <
o First apply s, if that fails apply s

e Note: local backtracking

PlusAssoc :

Plus(Plus(el, e2), e3) -> Plus(el, Plus(e2, e3))
EvalPlus :

Plus(Int(2),Int(5)) -> Int(k) where <addS>(z,7j) => k

Plus(Int("14") ,Int("3"))
stratego> PlusAssoc
command failed

stratego> PlusAssoc <+ EvalPlus
Int ("17")

Composing Strategies

Guarded choice
e Syntax: 51 < S + S3

e First apply s1 iIf that succeeds apply s> to the result
else apply s3 to the original term

e Do not backtrack to s3 if s» fails!

Motivation

® 51 <+ s always backtracks to sy if 51 falls
o (51;) <+ 83 #% 51 < 5 + s3
e commit to branch if test succeeds, even if that branch fails

testl < transfil
+ test?2 < transf?
+ transf3

Composing Strategies

Guarded choice
e Syntax: 51 < S + S3

e First apply s1 iIf that succeeds apply s> to the result
else apply s3 to the original term

e Do not backtrack to s3 if s» fails!

Motivation

® 51 <+ s always backtracks to sy if 51 falls
o (51;) <+ 83 #% 51 < 5 + s3
e commit to branch if test succeeds, even if that branch fails

testl < transfil
+ test?2 < transf?
+ transf3

If then else (sugar)
e Syntax: if s; then s, else s3 end
e Equivalent to: where(s;) < s + s3

Composing Strategies

Identity Failure
e Syntax: id e Syntax: fail
e Always succeed e Always fall

e Some laws e Some laws
® 1d ; s S fail <+ s S
® s ; 1d S s <+ fail S
1d <+ s = id fail ; s = fail

O
® s <+ id £ s s ; fail # fail
® 51 < 1d + & = 51 <+ 5

Composing Strategies

Identity
e Syntax: id
e Always succeed
e Some laws

Failure
e Syntax: fail
e Always fall
e Some laws

o fail <+ s

s <+ fail S
fail ; s = fail
s ; fail ;‘é fail

1id ; S
S ; 1 S
1d <+ s = 1d
s <+ id # s
s1 < 1d + S

S S

51 <+

Negation (sugar)
e Syntax: not(s)
e Fail if s succeeds, succeed if s fails

e Equivalent to: s < fail + id

Parameterizing Strategies

Parameterized and recursive definitions
o Syntax: F(x1,..-,XnlV1i,eu.s¥Ym) = S

o Strategy definition parameterized with strategies (xi,...,X,)
and terms (y1,...,Ym)

e Note: definitions may be recursive

Parameterizing Strategies

Parameterized and recursive definitions
o Syntax: f(x1,...,XnlV1s...5Ym) = S

o Strategy definition parameterized with strategies (xi,...,X,)
and terms (y1,...,Ym)

e Note: definitions may be recursive

try(s) s <+ id
repeat (s) try(s; repeat(s))
while(c, s) if ¢ then s; while(c,s) end

do-while(s, c) s; if ¢ then do-while(s, c) end

Traversal Strategies

Term Rewriting for Program Transformation

Term Rewriting
e apply set of rewrite rules exhaustively
Advantages

e First-order terms describe abstract syntax

e Rewrite rules express basic transformation rules
(operationalizations of the algebraic laws of the language.)

e Rules specified separately from strategy

Limitations
o Rewrite systems for programming languages often
non-terminating and/or non-confluent

® |n general: do not apply all rules at the same time or apply all
rules under all circumstances

signature

sorts Prop

constructors
False : Prop
True : Prop
Atom : String -> Prop
Not : Prop -> Prop
And . Prop * Prop ->
Or . Prop * Prop ->
rules
DAOL : And(Or(x, y), z)
DAOR : And(z, Or(x, y))
DOAL : Or(And(x, y), z)
DOAR : Or(z, And(x, y))
DN : Not (Not (x))
DMA : Not(And(x, y))
DMO : Not(Or(x, y))

Prop

Prop

-> Or(And(x, z), And(y, z))
-> Or(And(z, x), And(z, y))
-> And(Or(x, z), Or(y, z))
-> And(0r(z, x), 0r(z, y))
-> X

-> 0r(Not(x), Not(y))

-> And(Not(x), Not(y))

signature

sorts Prop

constructors
False : Prop
True : Prop
Atom : String -> Prop
Not : Prop -> Prop
And . Prop * Prop ->
Or . Prop * Prop ->
rules
DAOL : And(Or(x, y), z)
DAOR : And(z, Or(x, y))
DOAL : Or(And(x, y), z)
DOAR : Or(z, And(x, y))
DN : Not (Not (x))
DMA : Not(And(x, y))
DMO : Not(Or(x, y))

Prop

Prop

-> Or(And(x, z), And(y, z))
-> Or(And(z, x), And(z, y))
-> And(Or(x, z), Or(y, z))
-> And(0r(z, x), 0r(z, y))
-> X

-> 0r(Not(x), Not(y))

-> And(Not(x), Not(y))

Encoding Control with Recursive Rewrite Rules

Common solution

e |ntroduce additional constructors that achieve normalization
under a restricted set of rules

e Replace a ‘pure’ rewrite rule

p1 —> p2
with a functionalized rewrite rule:

f : P1 -2 pé
applying f recursively in the right-hand side

e Normalize terms £ (t) with respect to these rules

e The function now controls where rules are applied

dnf : True -> True

dnf : False -> False

dnf : Atom(x) -> Atom(x)

dnf : Not(x) -> <not> (<dnf>x)

dnf : And(x,y) -> <and>(<dnf>x,<dnf>y)
dnf : Or(x,y) -> 0r (<dnf>x,<dnf>y)

andl : (Or(x,y),z) -> Or(<and>(x,z),<and>(y,z))
and2 : (z,0r(x,y)) -> Or(<and>(z,x),<and>(z,y))
and3 : (x,y) -> And(x,y)

and = andl <+ and2 <+ and3

notl : Not(x) -> X

not2 : And(x,y) -> Or(<not>(x),<not>(y))
not3 : Or(x,y) -> <and>(<not>(x) ,<not>(y))
notd : x -> Not (x)

not = notl <+ not2 <+ not3 <+ not4d

Analysis

Functional encoding has two main problems

Overhead due to explicit specification of traversal

e A traversal rule needs to be defined for each constructor In
the signature and for each transformation.

Separation of rules and strategy is lost

e Rules and strategy are completely intertwined

e Intertwining makes it more difficult to understand the
transformation

® Intertwining makes it impossible to reuse the rules in a
different transformation.

Analysis

Language Complexity

Traversal overhead and reuse of rules is important, considering the
complexity of real programming languages:

language | #£ constructors
Tiger 65

C 140

Java b 325

COBOL | 300-1200

Requirements

e Control over application of rules
e No traversal overhead

e Separation of rules and strategies

Programmable Rewriting Strategies

Programmable Rewriting Strategies

e Select rules to be applied in specific transformation
e Select strategy to control their application
e Define your own strategy if necessary

e Combine strategie
Ildioms

e (Cascading transformations
e One-pass traversal
e Staged transformation

Local transformation

signature

sorts Prop

constructors
False : Prop
True : Prop
Atom : String -> Prop
Not : Prop -> Prop
And : Prop * Prop ->
Or . Prop * Prop ->
rules
DAOL : And(Or(x, y), z)
DAOR : And(z, Or(x, y))
DOAL : Or(And(x, y), z)
DOAR : Or(z, And(x, y))
DN : Not (Not(x))
DMA : Not(And(x, y))
DMO : Not(Or(x, y))

Prop

Prop

-> Or(And(x, z), And(y, z))
-> Or(And(z, x), And(z, y))
-> And(Or(x, z), Or(y, z))
-> And(0r(z, x), 0r(z, y))
-> X

-> 0r (Not(x), Not(y))

-> And(Not(x), Not(y))

Strategic Idioms: Cascading Transformation

Cascading Transformations

e Apply small, independent transformations in combination

o Accumulative effect of small rewrites

simplify = innermost(R1 <+ ... <+ Rn)

disjunctive normal form

dnf = innermost (DAOL <+ DAOR <+ DN <+ DMA <+ DMO)

conjunctive normal form

cnf = innermost (DOAL <+ DOAR <+ DN <+ DMA <+ DMO)

Strategic ldioms: One-Pass Traversal

One-pass Traversal

e Apply rules in a single traversal over a program tree

simplifyl = downup(repeat(R1 <+ ... <+ Rn))
simplify2 = bottomup(repeat(R1 <+ ... <+ Rn))

constant folding

Eval : And(True, e) -> e
Eval : And(False, e) -> False
Eval :

eval = bottomup (try(Eval))

Strategic Idioms: One-Pass Traversal

Example: Desugarings

DefN : Not(x) Impl(x, False)

DefI : Impl(x, y) Or (Not(x), y)

DefE : Eq(x, y) And (Impl(x, y), Impl(y, x))
Def01 : Or(x, y) Impl (Not(x), V)

Def02 : Or(x, y) Not (And (Not (x), Not(y)))
DefAl : And(x, y) Not (Or (Not(x), Not(y)))
DefA2 : And(x, y) Not (Impl(x, Not(y)))
IDefI : Or(Not(x), y) -> Impl(x, y)

IDefE : And(Impl(x, y), Impl(y, x)) -> Eq(x, y)

desugar = topdown(try(Defl <+ DefE))

impl-nf = topdown(repeat(DefN <+ DefA2 <+ Def(01 <+ DefE

Strategic ldioms: Staged Transformation

Staged Transformation

e Transformations are not applied to a subject term all at once,
but rather in stages

e In each stage, only rules from some particular subset of the
entire set of available rules are applied.

simplify =
innermost (Al <+ ... <+ Ak)
: innermost(B1l <+ ... <+ Bl)

: innermost(Cl <+ ... <+ Cm)

Strategic ldioms: Local Transformation

Local transformation

e Apply rules only to selected parts of the subject program

transformation =
alltd(
trigger—-transformation
: innermost (Al <+ ... <+ An)

)

Except where otherwise noted, this work is licensed under

()

80

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

