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Garbage Collection

Reference counting
- deallocate records with count O

Mark & sweep
- mark reachable records
- sweep unmarked records

Copying collection
- Ccopy reachable records

Generational collection
- collect only in young generations of records



Reading Material



Andrew W. Appel and Jens Palsberg (2002). Garbage
Collection. Chapter In Modern Compiler
Implementation in Java, 2nd edition. Cambridge
University Press.

The lecture closely follows the discussion of mark-
and-sweep collection, reference counts, copying
collection, and generational collection 1in this
chapter. This chapter also provides detailed cost
analyses and discusses advantages and disadvantages
of the different approaches to garbage collection.
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Richard Jones, Antony Hosking, Eliot Moss. The
Garbage Collection Handbook. The Art of Automatic

Memory Management.

A systematic overview of garbage collection
algorithms.
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Memory Safety

A program execution is memory safe If
- It only creates valid pointers through standard means
- Only uses a pointer to access memory that belongs to that pointer

Combines temporal safety and spatial safety



Spatial Safety

Access only to memory that pointer owns

View pointer as triple (p, b, €)

- p Is the actual pointer

- b Is the base of the memory region it may access
- e Is the extent (bounds of that region)

Access allowed iff
- b <= p <= e - sizeof(typeof(p))

Allowed operations
- Pointer arithmetic increments p, leaves b and e alone
- Using &: e determined by size of original type



Temporal Safety

No access to undefined memory

Temporal safety violation: trying to access undefined memory
- Spatial safety assures it was to a legal region
- Temporal safety assures that region is still in play

Memory region is defined or undefined

Undefined memory is

- unallocated

- uninitialized

- deallocated (dangling pointers)



Memory Management

Manual memory management

- malloc, free in C

- Easy to accidentally free memory that is still in use
- Pointer arithmetic is unsafe

Automated memory management
- Spatial safety: references are opaqgue (no pointer arithmetic)
- (+ array bounds checking)

- Temporal safety: no dangling pointers (only free unreachable
memory)



Garbage Collector

Terminology

- objects that are referenced are live

- objects that are not referenced are dead (garbage)
- Objects are allocated on the heap

Responsibilities

- allocating memory

- ensuring live objects remain in memory

- garbage collection: recovering memory from dead objects



An Example Program

N [ N

\\\\\\§>‘f///////_’/////f class Main {
static Tree makeTree() { .. }
static void showTree() { .. }
‘\\\ static void main() {
{

12| @ | ® 153‘ 0\7 370\0>5900 \9 20| e| @
® |37

o List x = new List(nil, 7);
ol qlr Lis# y = nhew List(x, 9);
X.link = vy;
class List { }
List Llink; {
int key; Tree p = maketree();
} Tree r = p.right;
int q = r.key;
class Tree { // garbage-collect here
int key; showtree(p)
tree left; }
tree right; }
5 3
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Reference Counting

Counts

- how many pointers point to each record?
- store count with each record

Counting
- extra instructions

Deallocate
- put on freelist
- recursive deallocation on allocation



x.f :

Reference Counting: Instrumentation

IN

Z.count :

1f (c ==
X.f

p.count

X.f

Z .count
c -1

C

@) put z on free list

p
p.count

c + 1
C

15
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Reference Counting
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Reference Counting: Notes

Cycles

- memory leaks

- break cycles explicitly

- occasional mark & sweep collection

Expensive

- fetch, decrease, store old reference counter
- possible deallocation

- fetch, increase, store new reference counter



Programming Languages using Reference Counting

Languages with automatic reference counting
- Objective-C, Swift

Dealing with cycles

- strong reference: counts as a reference

- weak reference: can be nil, does not count

- unowned references: cannot be nil, does not count



Mark & Sweep



Mark & Sweep: |dea

Mark

— mark reachable records
- start at variables (roots)
- follow references

Sweep

- marked records: unmark

- unmarked records: deallocate
- linked list of free records
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Sweeping
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Sweeping
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Sweeping
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Sweeping
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Sweeping
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Mark & Sweep: Algorithms

function DFS(x)
1f pointer(x) & !x.marked
X.marked := true
foreach f 1n fields(x)

DFS(f)

23



Mark & Sweep: Algorithms

function DFS(x)
1f pointer(x) & !x.marked
X.marked := true
foreach f 1n fields(x)

DFS(f)

Sweep phase:
p := first address in heap

while p < last address 1in heap
1f p.marked

p.marked := false
else
fl := first field 1n p
p.fl := freelist
free list = p

p :=p + sizeof( p )

23



Mark & Sweep: Costs

Instructions

- R reachable words in heap of size H

- Mark: c1 * R

- Sweep: c2 * H

- Reclaimed: H - R words

- Instructions per word reclaimed: (c1 *R+c2 *H)/(H - R)
- iIf (H >> R) cost per allocated word ~ c2



Mark & Sweep: Costs

Memory

- DFS is recursive

- maximum depth: longest path in graph of reachable data
- worst case: H

- | stack of activation records | > H

Measures
- explicit stack
- pointer reversal



Marking: DFS with Explicit Stack: Algorithms

20



Marking: DFS with Explicit Stack: Algorithms

function DFS(x)
1f pointer(x) & !x.marked

x.marked = true
t =1 ; stack[t] = X

while t > 0
X = stack[t] ; t =t -1

foreach f 1n fields(x)
1f pointer(f) & !f.marked

f.marked = true
t =t + 1 ; stack[t] =f

20



Marking: DFS with Pointer Reversal

function DFS(x)
1f pointer(x) & x.done < 0
X.done = 0 ; t = nil

while true
1f x.done < x.fields.s1ize
y = X.f1elds[x.done]
1f pointer(y) & y.done < 0
X.flields[x.done] =t ; t =X ; Xx =y ; X.done = 0
else
X.done = x.done + 1

else
y =X; X =t
1f t = nil then return
t = x.fields[x.done]; x.fields[x.done] =y
X.done = x.done + 1

marking without memory overhead

27



Mark & Sweep

Sweeping

- Independent of marking algorithm
- several freelists (per record size)
- split free records for allocation

Fragmentation

- external: many free records of small size
- Internal: too-large record with unused memory inside



Copying Collection



Copying Collection: Idea

Spaces

- fromspace & tospace
- switch roles after copy

Copy

- traverse reachability graph

- copy from fromspace to tospace

- fromspace unreachable, free memory

- tospace compact, no fragmentation



Copying Collection: Idea

roots roots

=)

limit — «— [imit

<«— next

next

from- to- from- to-
space space space space

31



next

limit —

Copying Collection: Algorithm

roots

from-
space

=)

to-
space

roots

from-
space

to-
space

«— next

«— [imit

function BFS()
next := scan := start(tospace)

foreach r i1n roots
r = Forward(r)

while scan < next

foreach f 1n fields of scan
scan.f = Forward(scan.f)

scan = scan + sizeof(scan)

32



Copying Collection: Example
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Copying Collection: Example
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Copying Collection: Example
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Copying Collection: Example
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Copying Collection: Example
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Copying Collection: Issues

Adjacent records
- likely to be unrelated

Pointers to records In records

- likely to be accessed
- likely to be far apart

Solution
- depth-first copy: slow pointer reversals
- hybrid copy algorithm



Copying Collection: Costs

Instructions

- R reachable words in heap of size H

- BFS: c3 * R

- No sweep

- Reclaimed: H/2 - R words

- Instructions per word reclaimed: (c3 * R)/ (H/2 - R)

- |If (H >> R) : cost per allocated word => 0

- |If (H = 4R) : c3 instructions per word allocated

- Solution: reduce portion of R to inspect => generational collection



Generational Collection



Generational Collection

Generations

- young data: likely to die soon

- old data: likely to survive for more collections

- divide heap, collect younger generations more frequently

Collection

- roots: variables & pointers from older to younger generations
- preserve pointers to old generations
- promote objects to older generations
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Generational Collection: Costs

Instructions

- R reachable words in heap of size H

- BFS: c3 * R

- No sweep

- 10% of youngest generation is live: H/R = 10

- Instructions per word reclaimed:
(c3*R)/(H-R)=(c3"R)/(10R - R) ~=c3/10

- Adding to remembered set: 10 instructions per update



Incremental Collection

Interrupt by garbage collector undesirable
- Interactive, real-time programs

Incremental / concurrent garbage collection
- interleave collector and mutator (program)

- Incremental: per request of mutator

- concurrent: In between mutator operations

Tricolor marking

- White: not visited

- Grey: visited (marked or copied), children not visited
- Black: object and children marked






Algorithms

How can we collect unreachable records on the heap?
- reference counts

- mark reachable records, sweep unreachable records

- copy reachable records

How can we reduce heap space needed for garbage
collection?

- pointer-reversal

- breadth-first search

- hybrid algorithms



Design Choices

Serial vs Parallel
- garbage collection as sequential or parallel process

Concurrent vs Stop-the-World
- concurrently with application or stop application

Compacting vs Non-compacting vs Copying

- compact collected space

- free list contains non-compacted chunks

- copy live objects to new space; from-space Is hon-fragmented



Performance Metrics

Throughput
- percentage of time not spent in garbage collection

GC overhead
- percentage of time spent in garbage collection

Pause time
- length of time execution is stopped during garbage collection

Frequency of collection
- how often collection occurs

Footprint
- measure of (heap) size



Garbage Collection in Java HotSpot VM

Serial collector

- young generation: copying collection
- old generation: mark-sweep-compact collection

Parallel collector
- young generation: stop-the-world copying collection in parallel
- old generation: same as serial

Parallel compacting collector
- young generation: same as parallel
- old generation: roots divided in threads, marking live objects in parallel, ...

Concurrent Mark-Sweep (CMS) collector
- stop-the-world initial marking and re-marking
- concurrent marking and sweeping
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Language-Parametric Memory Management?

Garbage collectors are language-specific

- Representation of objects in memory
- Roots of heap in stack

Can we derive garbage collector from language definition?

A uniform model for memory layout

- Scopes describe static binding structure

- Frames instantiate scopes at run time

- Language-parametric memory management
- Language-parametric type safety



Language-Parametric Type Safety?

Type Safety: Well-typed programs don’t go wrong
- A program that type checks does not have run-time type errors
- Preservation
pe : t& e —>v=v. .t
- Progress
»e —> e’ => e’ 1s a value || e’ —> e’’
- (Slightly different for big step semantics as in definitional interpreters)

Proving type safety

- Easier to establish with an interpreter

- Bindings complicate proof

- How to maintain?

- Can we automate verification of type safety?



Traditionally, operational semantics specifications
use ad hoc mechanisms for representing the binding
structures of programming languages.

This paper introduces frames as the dynamic
counterpart of scopes 1n scope graphs.

This provides a uniform model for the representation
of memory at run-time.

We are currently experimenting with specializing
DynSem interpreters using scopes and frames using

Truffle/Graal with encouraging results (200x speed-
ups).

ECOOP 2016

http://dx.doi1.org/10.4230/LIPIcs.ECOOP.2016.20

Scopes Describe Frames: A Uniform Model for
Memory Layout in Dynamic Semantics (Artifact)*

Casper Bach Poulsen', Pierre Néron?, Andrew Tolmach?®, and

Eelco Visser?

1 Delft University of Technology
c.b.poulsen@tudelft.nl

2 French Network and Information Security Agency (ANSSI)

pierre.neron®@ssi.gouv.fr

3 Portland State University
tolmach@pdx.edu

4 Delft University of Technology
visserQacm.org

Abstract

Our paper introduces a systematic approach to the
alignment of names in the static structure of a pro-
gram, and memory layout and access during its ex-
ecution. We develop a uniform memory model con-
sisting of frames that instantiate the scopes in the

scope graph of a program. This provides a language-

independent correspondence between static scopes
and run-time memory layout, and between static

resolution paths and run-time memory access paths,
The approach scales to a range of binding features,

supports straightforward type soundness proofs,

and provides the basis for a language-independent
specification of sound reachability-based garbage
collection.

This Coq artifact showcases how our uniform
model for memory layout in dynamic semantics
provides structure to type soundness proofs. The
artifact contains type soundness proofs mechanized

in Coq for (supersets of) all languages in the pa-
per. The type soundness proofs rely on a language-

independent framework formalizing scope graphs
and frame heaps.
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Specializing a Meta-Interpreter
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ABSTRACT

DynSem is a domain-specific language for concise specification of
the dynamic semantics of programming languages, aimed at rapid
experimentation and evolution of language designs. DynSem spec-
ifications can be executed to interpret programs in the language
under development. To enable fast turnaround during language
development, we have developed a meta-interpreter for DynSem
specifications, which requires minimal processing of the specifica-
tion. In addition to fast development time, we also aim to achieve
fast run times for interpreted programs.

In this paper we present the design of a meta-interpreter for
DynSem and report on experiments with JIT compiling the applica-
tion of the meta-interpreter on the Graal VM. By interpreting spec-
ifications directly, we have minimal compilation overhead. By spe-
cializing pattern matches, maintaining call-site dispatch chains and
using native control-flow constructs we gain significant run-time
performance. We evaluate the performance of the meta-interpreter
when applied to the Tiger language specification running a set of
common benchmark programs. Specialization enables the Graal
VM to JIT compile the meta-interpreter giving speedups of up to
factor 15 over running on the standard Oracle Java VM.
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1 INTRODUCTION

The dynamic semantics of a programming language defines the
run time execution behavior of programs in the language. Ideally,
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the design of a programming language starts with the specifica-
tion of its dynamic semantics to provide a high-level readable and
unambiguous definition. However, understanding the design of a
programming language also requires experimentation by actually
running programs. Therefore, this ideal route is rarely taken, but
language designs are embodied in the implementation of inter-
preters or compilers instead.

We have previously designed DynSem [33], a high-level meta-
DSL for dynamic semantics specifications of programming lan-
guages, with the aim of supporting readable and executable specifi-
cation. It supports the definition of modular and concise semantics
by means of reduction rules with implicit propagation of contextual
information. DynSem’s executable semantics entails that specifica-
tions can be used to interpret object language programs.

In our early prototypes, DynSem specifications were compiled
to an interpreter. The process of generating a Java implementa-
tion of an interpreter and compiling that generated code caused
long turnaround times during language prototyping. In order to
support rapid prototyping with short turnaround times, we turned
to interpreting specifications directly instead of compiling them.
A DynSem interpreter is a meta-interpreter since the programs it
interprets are themselves interpreters. Figure 1 depicts the high-
level architecture of the DynSem meta-interpreter. First, a DynSem
specification is desugared (explicated) to make implicit passing of se-
mantic components explicit. The resulting specification in DynSem
Core is then loaded into the meta-interpreter together with the
AST of the interpreted object program. The interpreter consumes
the program as input enacting the specification. This produces the
desired result of a short turnaround time for experimenting with
dynamic semantics specifications.

Meta-interpretation reduces the turnaround time at the expense
of execution performance. At run time there are two interpreter
layers operating (the meta-language interpreter and the object-
language interpreter) which introduces substantial overhead. While
we envision DynSem as a convenient way to prototype the dynamic
semantics of programming languages, ultimately we also envision
it as a convenient way to bridge the gap between the prototyp-
ing and production phases of a programming language’s lifecycle.
Thus, we not only want an interpreter fast, but we also want a
fast interpreter, which raises the question: Can we achieve fast
object-language interpreters by optimizing the meta-interpretation
of dynamic semantics specifications?

Direct vanilla interpreters are in general slow to begin with,
even when they are implemented in a host language that is JIT-
ed. This is because the host JIT is unable to see patterns in the
object language and to meaningfully optimize the interpreter. The
task of optimizing an interpreter has traditionally been long and
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—— Abstract

DynSem is a domain-specific language for concise specification of the dynamic semantics of program-
ming languages, aimed at rapid experimentation and evolution of language designs. To maintain a
short definition-to-execution cycle, DynSem specifications are meta-interpreted. Meta-interpretation
introduces runtime overhead that is difficult to remove by using interpreter optimization frameworks
such as the Truffle/Graal Java tools; previous work has shown order-of-magnitude improvements from
applying Truffle/Graal to a meta-interpreter, but this is still far slower than what can be achieved
with a language-specific interpreter. In this paper, we show how specifying the meta-interpreter
using scope graphs, which encapsulate static name binding and resolution information, produces
much better optimization results from Truffle/Graal. Furthermore, we identify that JIT compilation
is hindered by large numbers of calls between small polymorphic rules and we introduce rule cloning
to derive larger monomorphic rules at run time as a countermeasure. Our contributions improve
the performance of DynSem-derived interpreters to within an order of magnitude of a handwritten

language-specific interpreter.
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1 Introduction

A language workbench [9, 36] is a computing environment that aims to support the rapid
development of programming languages with a quick turnaround time for language design
experiments. Meeting that goal requires that (a) turning a language design idea into an
executable prototype is easy; (b) the delay between making a change to the language and
starting to execute programs in the revised prototype is short; and (c¢) the prototype runs
programs reasonably quickly. Moreover, once the language design has stabilized, we will
need a way to run programs at production speed, as defined for the particular language and
application domain.
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A desirable property for programming languages 1s
type safety: well-typed programs don’t go wrong.

Demonstrating type safety for language
implementations requires a proof. Such a proof 1s
hard (at least tedious) for language models, and
rarely done for language implementations.

Can we automatically check type safety for
language implementations?

This paper shows how to do that at least for
definitional interpreters for non-trivial
languages. (By using scopes and frames to
represent bindings.)
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A definitional interpreter defines the semantics of an object language in terms of the (well-known) semantics
of a host language, enabling understanding and validation of the semantics through execution. Combining
a definitional interpreter with a separate type system requires a separate type safety proof. An alternative
approach, at least for pure object languages, is to use a dependently-typed language to encode the object
language type system in the definition of the abstract syntax. Using such intrinsically-typed abstract syntax
definitions allows the host language type checker to verify automatically that the interpreter satisfies type
safety. Does this approach scale to larger and more realistic object languages, and in particular to languages
with mutable state and objects?

In this paper, we describe and demonstrate techniques and libraries in Agda that successfully scale up
intrinsically-typed definitional interpreters to handle rich object languages with non-trivial binding structures
and mutable state. While the resulting interpreters are certainly more complex than the simply-typed A-
calculus interpreter we start with, we claim that they still meet the goals of being concise, comprehensible,
and executable, while guaranteeing type safety for more elaborate object languages. We make the following
contributions: (1) A dependent-passing style technique for hiding the weakening of indexed values as they
propagate through monadic code. (2) An Agda library for programming with scope graphs and frames, which
provides a uniform approach to dealing with name binding in intrinsically-typed interpreters. (3) Case studies
of intrinsically-typed definitional interpreters for the simply-typed A-calculus with references (STLC+Ref)
and for a large subset of Middleweight Java (M]).
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