
Memory Management

CS4200 | Compiler Construction | December 2, 2021

Eelco Visser

Reference counting
- deallocate records with count 0

Garbage Collection

Reference counting
- deallocate records with count 0

Mark & sweep
- mark reachable records

- sweep unmarked records

Garbage Collection

Reference counting
- deallocate records with count 0

Mark & sweep
- mark reachable records

- sweep unmarked records

Copying collection
- copy reachable records

Garbage Collection

Reference counting
- deallocate records with count 0

Mark & sweep
- mark reachable records

- sweep unmarked records

Copying collection
- copy reachable records

Generational collection
- collect only in young generations of records

Garbage Collection

Reading Material

4

Andrew W. Appel and Jens Palsberg (2002). Garbage
Collection. Chapter In Modern Compiler
Implementation in Java, 2nd edition. Cambridge
University Press.  

The lecture closely follows the discussion of mark-
and-sweep collection, reference counts, copying
collection, and generational collection in this
chapter. This chapter also provides detailed cost
analyses and discusses advantages and disadvantages
of the different approaches to garbage collection.

5

Richard Jones, Antony Hosking, Eliot Moss. The
Garbage Collection Handbook. The Art of Automatic
Memory Management.

A systematic overview of garbage collection
algorithms.

Dig deeper

Memory Safety &
Memory Management

A program execution is memory safe if
- It only creates valid pointers through standard means

- Only uses a pointer to access memory that belongs to that pointer

Combines temporal safety and spatial safety

Memory Safety

Access only to memory that pointer owns
View pointer as triple (p, b, e)
- p is the actual pointer

- b is the base of the memory region it may access

- e is the extent (bounds of that region)

Access allowed iff
- b <= p <= e - sizeof(typeof(p))

Allowed operations
- Pointer arithmetic increments p, leaves b and e alone

- Using &: e determined by size of original type

Spatial Safety

No access to undefined memory
Temporal safety violation: trying to access undefined memory
- Spatial safety assures it was to a legal region

- Temporal safety assures that region is still in play

Memory region is defined or undefined
Undefined memory is
- unallocated

- uninitialized

- deallocated (dangling pointers)

Temporal Safety

Manual memory management
- malloc, free in C

- Easy to accidentally free memory that is still in use

- Pointer arithmetic is unsafe

Automated memory management
- Spatial safety: references are opaque (no pointer arithmetic)

- (+ array bounds checking)

- Temporal safety: no dangling pointers (only free unreachable

memory)

Memory Management

Terminology
- objects that are referenced are live

- objects that are not referenced are dead (garbage)

- objects are allocated on the heap

Responsibilities
- allocating memory

- ensuring live objects remain in memory

- garbage collection: recovering memory from dead objects

Garbage Collector

An Example Program

12

class List {
 List link;
 int key;
}

class Tree {
 int key;
 tree left;
 tree right;
}

class Main {
 static Tree makeTree() { … }
 static void showTree() { … }
 static void main() {

 {
 List x = new List(nil, 7);
 List y = new List(x, 9);
 x.link = y;

 }
 {

 Tree p = maketree();
 Tree r = p.right;
 int q = r.key;
 // garbage-collect here
 showtree(p)

 }
 }
}

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

Reference Counting

Counts
- how many pointers point to each record?

- store count with each record

Counting
- extra instructions

Deallocate
- put on freelist

- recursive deallocation on allocation

Reference Counting

Reference Counting: Instrumentation

15

x.f := p

z := x.f
c := z.count
c := c - 1
z.count := c
if (c == 0) put z on free list
x.f := p
c := p.count
c := c + 1
p.count := c

Reference Counting

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

16

Reference Counting

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

16

1 1 1 2 1 11

Reference Counting

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

16

1 1 1 2 1 111 1

Cycles
- memory leaks

- break cycles explicitly

- occasional mark & sweep collection

Expensive
- fetch, decrease, store old reference counter

- possible deallocation

- fetch, increase, store new reference counter

Reference Counting: Notes

Languages with automatic reference counting
- Objective-C, Swift

Dealing with cycles
- strong reference: counts as a reference

- weak reference: can be nil, does not count

- unowned references: cannot be nil, does not count

Programming Languages using Reference Counting

Mark & Sweep

Mark
- mark reachable records

- start at variables (roots)

- follow references

Sweep
- marked records: unmark

- unmarked records: deallocate

- linked list of free records

Mark & Sweep: Idea

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Marking

12 ● ●

● 37 ●

15 ● ● 37 ● ● 59 ● ● 20 ● ●● 9● 7

p q r

21

roots

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Sweeping

12 ● ● 15 ● ● 37 ● ● 59 ● ● 20 ● ●

● 37 ●

● 9● 7

p q r

22

●

f
freelist

Mark & Sweep: Algorithms

23

function DFS(x)

 if pointer(x) & !x.marked

 x.marked := true

 foreach f in fields(x)

 DFS(f)

Mark & Sweep: Algorithms

23

Sweep phase:

 p := first address in heap

 while p < last address in heap
 if p.marked

 p.marked := false

 else

 f1 := first field in p
 p.f1 := freelist
 free list := p

 p := p + sizeof(p)

function DFS(x)

 if pointer(x) & !x.marked

 x.marked := true

 foreach f in fields(x)

 DFS(f)

Instructions
- R reachable words in heap of size H

- Mark: c1 * R

- Sweep: c2 * H

- Reclaimed: H - R words

- Instructions per word reclaimed: (c1 * R + c2 * H) / (H - R)

- if (H >> R) cost per allocated word ~ c2

Mark & Sweep: Costs

Memory
- DFS is recursive

- maximum depth: longest path in graph of reachable data

- worst case: H

- | stack of activation records | > H

Measures
- explicit stack

- pointer reversal

Mark & Sweep: Costs

Marking: DFS with Explicit Stack: Algorithms

26

Marking: DFS with Explicit Stack: Algorithms

26

function DFS(x)

 if pointer(x) & !x.marked

 x.marked = true
 t = 1 ; stack[t] = x

 while t > 0

 x = stack[t] ; t = t - 1

 foreach f in fields(x)
 if pointer(f) & !f.marked

 f.marked = true
 t = t + 1 ; stack[t] = f

Marking: DFS with Pointer Reversal

27

function DFS(x)
 if pointer(x) & x.done < 0
 x.done = 0 ; t = nil

 while true
 if x.done < x.fields.size

 y = x.fields[x.done]
 if pointer(y) & y.done < 0
 x.fields[x.done] = t ; t = x ; x = y ; x.done = 0
 else
 x.done = x.done + 1

 else
 y = x; x = t
 if t = nil then return
 t = x.fields[x.done]; x.fields[x.done] = y
 x.done = x.done + 1

marking without memory overhead

Sweeping
- independent of marking algorithm

- several freelists (per record size)

- split free records for allocation

Fragmentation
- external: many free records of small size

- internal: too-large record with unused memory inside

Mark & Sweep

Copying Collection

Spaces
- fromspace & tospace

- switch roles after copy

Copy
- traverse reachability graph

- copy from fromspace to tospace

- fromspace unreachable, free memory

- tospace compact, no fragmentation

Copying Collection: Idea

Copying Collection: Idea

31

roots roots

from-
space

to-
space

from-
space

to-
space

next

limit

next

limit

Copying Collection: Algorithm

32

roots roots

from-
space

to-
space

from-
space

to-
space

next

limit

next

limit

function BFS()

 next := scan := start(tospace)

 foreach r in roots
 r = Forward(r)

 while scan < next

 foreach f in fields of scan
 scan.f = Forward(scan.f)

 scan = scan + sizeof(scan)

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

15 ● ●

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

15 ● ●

●

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

15 ● ●

●

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

15 ● ●

●

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

15 ● ●

●

37 ● ●

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

15 ● ●

●

37 ● ●

●

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

15 ● ●

●

37 ● ●

●

Copying Collection: Example

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

33

15 ● ●

●

37 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

12 ● ● ● 715 ● ● 37 ● ● 59 ● ● ● 9 20 ● ●

p q r

34

●

37 ● ●

●

12 ● ●

●

20 ● ●

●

59 ● ●

●

Copying Collection: Example

15 ● ●

● 37 ●

p q r

34

37 ● ● 12 ● ● 20 ● ● 59 ● ●

Adjacent records
- likely to be unrelated

Pointers to records in records
- likely to be accessed

- likely to be far apart

Solution
- depth-first copy: slow pointer reversals

- hybrid copy algorithm

Copying Collection: Issues

Instructions
- R reachable words in heap of size H

- BFS: c3 * R

- No sweep

- Reclaimed: H/2 - R words

- Instructions per word reclaimed: (c3 * R) / (H/2 - R)

- If (H >> R) : cost per allocated word => 0

- If (H = 4R) : c3 instructions per word allocated

- Solution: reduce portion of R to inspect => generational collection

Copying Collection: Costs

Generational Collection

Generations
- young data: likely to die soon

- old data: likely to survive for more collections

- divide heap, collect younger generations more frequently

Collection
- roots: variables & pointers from older to younger generations

- preserve pointers to old generations

- promote objects to older generations

Generational Collection

Generational Collection

39

roots

remembered
set

G0

G1

G2

remembered
set

G1

G2

roots

G0

Instructions
- R reachable words in heap of size H

- BFS: c3 * R

- No sweep

- 10% of youngest generation is live: H/R = 10

- Instructions per word reclaimed:  

(c3 * R) / (H - R) = (c3 * R) / (10R - R) ~= c3/10

- Adding to remembered set: 10 instructions per update

Generational Collection: Costs

Interrupt by garbage collector undesirable
- interactive, real-time programs

Incremental / concurrent garbage collection
- interleave collector and mutator (program)

- incremental: per request of mutator

- concurrent: in between mutator operations

Tricolor marking
- White: not visited

- Grey: visited (marked or copied), children not visited

- Black: object and children marked

Incremental Collection

Summary

How can we collect unreachable records on the heap?
- reference counts

- mark reachable records, sweep unreachable records

- copy reachable records

How can we reduce heap space needed for garbage
collection?
- pointer-reversal

- breadth-first search

- hybrid algorithms

Algorithms

Serial vs Parallel
- garbage collection as sequential or parallel process

Concurrent vs Stop-the-World
- concurrently with application or stop application

Compacting vs Non-compacting vs Copying
- compact collected space

- free list contains non-compacted chunks

- copy live objects to new space; from-space is non-fragmented

Design Choices

Throughput
- percentage of time not spent in garbage collection

GC overhead
- percentage of time spent in garbage collection

Pause time
- length of time execution is stopped during garbage collection

Frequency of collection
- how often collection occurs

Footprint
- measure of (heap) size

Performance Metrics

Serial collector
- young generation: copying collection

- old generation: mark-sweep-compact collection

Parallel collector
- young generation: stop-the-world copying collection in parallel

- old generation: same as serial

Parallel compacting collector
- young generation: same as parallel

- old generation: roots divided in threads, marking live objects in parallel, …

Concurrent Mark-Sweep (CMS) collector
- stop-the-world initial marking and re-marking

- concurrent marking and sweeping

Garbage Collection in Java HotSpot VM

Literature
- Andrew W. Appel, Jens Palsberg. Modern Compiler Implementation

in Java, 2nd edition, 2002.

- Sun Microsystems. Memory Management in the Java HotSpotTM

Virtual Machine, April 2006.

- Richard Jones, Antony Hosking, Eliot Moss. The Garbage Collection

Handbook. The Art of Automatic Memory Management.

Literature

Language-Parametric
Memory Management?

Garbage collectors are language-specific
- Representation of objects in memory

- Roots of heap in stack

Can we derive garbage collector from language definition?
A uniform model for memory layout
- Scopes describe static binding structure

- Frames instantiate scopes at run time

- Language-parametric memory management

- Language-parametric type safety

Language-Parametric Memory Management?

Type Safety: Well-typed programs don’t go wrong
- A program that type checks does not have run-time type errors

- Preservation

‣e : t & e —> v => v : t

- Progress

‣ e —> e’ => e’ is a value || e’ —> e’’

- (Slightly different for big step semantics as in definitional interpreters)

Proving type safety
- Easier to establish with an interpreter

- Bindings complicate proof

- How to maintain?

- Can we automate verification of type safety?

Language-Parametric Type Safety?

51

Traditionally, operational semantics specifications
use ad hoc mechanisms for representing the binding
structures of programming languages.

This paper introduces frames as the dynamic
counterpart of scopes in scope graphs.

This provides a uniform model for the representation
of memory at run-time.

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.20

ECOOP 2016

We are currently experimenting with specializing
DynSem interpreters using scopes and frames using
Truffle/Graal with encouraging results (200x speed-
ups).

52

53

A desirable property for programming languages is
type safety: well-typed programs don’t go wrong.

Demonstrating type safety for language
implementations requires a proof. Such a proof is
hard (at least tedious) for language models, and
rarely done for language implementations.

Can we automatically check type safety for
language implementations?

This paper shows how to do that at least for
definitional interpreters for non-trivial
languages. (By using scopes and frames to
represent bindings.)

https://doi.org/10.1145/3158104

POPL 2018

54

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

