Data-Flow Analysis

Jeff Smits & Eelco Visser

]
TUDelft

CS4200 | Compiler Construction | December 16 & 23, 2021

Reading Material

The following papers add background, conceptual exposition,

and examples to the material from the slides. Some notation and
technical details have been changed; check the documentation.

This paper introduces FlowSpec, the declarative data-flow
analysis specification language in Spoofax. Although the
design of the language described in this paper is still current,
the syntax used is already dated, i.e. the current FlowSpec
syntax in Spoofax is slightly different.

SLE 2017

https://doi.org/10.1145/3136014.3136029

FLowSPEC: Declarative Dataflow Analysis
Specification

Jeff Smits
TU Delft
The Netherlands
j.smits-1@tudelft.nl

Abstract

We present FLowSPEC, a declarative specification language
for the domain of dataflow analysis. FLowSpEc has declar-
ative support for the specification of control flow graphs
of programming languages, and dataflow analyses on these
control flow graphs. We define the formal semantics of
FLowSpEc, which is rooted in Monotone Frameworks. We
also discuss implementation techniques for the language,
partly used in the prototype implementation built in the
Sroorax Language Workbench. Finally, we evaluate the ex-
pressiveness and conciseness of the language with two case
studies. These case studies are analyses for GREEN-MARL, an
industrial, domain-specific language for graph processing.
The first case study is a classical dataflow analysis, scaled to
this full language. The second case study is a domain-specific
analysis of GREEN-MARL.

CCS Concepts « Software and its engineering — Do-
main specific languages;

Keywords control flow graph, dataflow analysis

ACM Reference Format:

Jeff Smits and Eelco Visser. 2017. FLowSrec: Declarative Dataflow
Analysis Specification. In Proceedings of 2017 ACM SIGPLAN In-
ternational Conference on Software Language Engineering (SLE’17).
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3136014.
3136029

1 Introduction

Dataflow analysis is a static analysis that answers questions
on what may or must happen before or after a certain point
in a program’s execution. With dataflow analysis we can
answer whether a value written to a variable here may be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE’17, October 2324, 2017, Vancouver, Canada

© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5525-4/17/10...$15.00
https://doi.org/10.1145/3136014.3136029

Eelco Visser

TU Delft
The Netherlands
e.visser@tudelft.nl
LVe LVe
[x:=2]"; 0 0
[y:=4]%; 0 {yl
[x:=1]"; {yl | {x,yl
if [y>x]' then {x,y} | {y)
[z:=y]"; {y) {z) l7l
else
[z:=y*y]®; {y} {z) > l
(x:=2] z) | o 3

Figure 1. Classical dataflow analysis Live Variables (LV). On
the left is an example program in the WHiLE language, with
added brackets to number program fragments. On the right
is the control flow graph (CFG) of the program. In the centre
is the analysis result. The LV, and LV, are before and after
the CFG node’s variables accesses respectively.

read later. Such dataflow analyses can be used to inform
optimisations.

For example, consider Live Variables analysis, illustrated
in Figure 1. This type of dataflow analysis can identify dead
code, which can be removed as an optimisation. In the ex-
ample this would be statement 1 since it writes x which is
overwritten by statement 3 without being read in between.
The Live Variables analysis provides a set of variables which
are read before being written after each statement in LV,
The figure shows this in the LV, set of statement 1, which
does not contain x.

Dataflow may also be part of a language’s static semantics.
For example, in Java a final field in a class must be initialised
by the end of construction of an object of that class. Since
constructor code can have conditional control flow, a data-
flow analysis is necessary to check that all possible execution
paths through constructors actually assign a value to the final
field [Gosling et al. 2005, sect. 16.9].

Dataflow analyses are often operationally encoded, whether
in a general purpose language, an attribute grammar system
or a logic programming language. This encoding is both an
overhead for the engineer implementing it, as well as an
overhead in decoding for anyone who wishes to understand
the analysis.

In formal, mathematical descriptions of a dataflow analy-
sis, the common patterns are often factored out. This shows
commonalities between different analyses, allows the study
of those commonalities and differences, as well as general

https://doi.org/10.1145/3136014.3136029

Journal version of the SLE paper.

This paper introduces FlowSpec, the declarative data-flow

analysis specification language in Spoofax.

Journal of Computer Languages 2020

https://doi.org/10.1016/j.cola.2019.100924

Journal of Computer Languages 57 (2020) 100924

Contents lists available at ScienceDirect x v DOMPUTER
LANGUAGES

Journal of Computer Languages

journal homepage: www.editorialmanager.com/cola/default.aspx

rLowsPEC: A declarative specification language for intra-procedural flow- K
Sensitive data-flow analysis

Check for
UpCates

Jeff Smits*®, Guido Wachsmuth®, Eelco Visser®

" Programming Languages Research Group, Delft University of Technology, Van Mourik Brockmanweg 6, XE Delft 2628, the Netherlands
b Oracle Labs, Prime Tower, Floor 17, Hardstrasse 201, Ziirich 8005, Switzerland

HIGHLIGHTS

e Data-flow analysis is the static analysis of programs to estimate their approximate run-time behavior or approximate intermediate run-time values. It is an integral
part of modern language specifications and compilers. In the specification of static semantics of programming languages, the concept of data-flow allows the
description of well-formedness such as definite assignment of a local variable before its first use. In the implementation of compiler back-ends, data-flow analyses
inform optimizations.

® Data-flow analysis has an established theoretical foundation. What lags behind is implementations of data-flow analysis in compilers, which are usually ad-hoc.
This makes such implementations difficult to extend and maintain. In previous work researchers have proposed higher-level formalisms suitable for whole-
program analysis in a separate tool, incremental analysis within editors, or bound to a specific intermediate representation.

® In this paper, we present FlowSpec, an executable formalism for specification of data-flow analysis. FlowSpec is a domain-specific language that enables direct
and concise specification of data-flow analysis for programming languages, designed to express flow-sensitive, intra-procedural analyses.

® We define the formal semantics of FlowSpec in terms of monotone frameworks. We describe the design of FlowSpec using examples of standard analyses. We also
include a description of our implementation of FlowSpec.

® In a case study we evaluate FlowSpec with the static analyses for GreenMarl, a domain-specific programming language for graph analytics.

ARTICLE INFO ABSTRACT
MSC: Data-flow analysis is the static analysis of programs to estimate their approximate run-time behavior or ap-
68N15 proximate intermediate run-time values. It is an integral part of modern language specifications and compilers.

In the specification of static semantics of programming languages, the concept of data-flow allows the de-
scription of well-formedness such as definite assignment of a local variable before its first use. In the im-
plementation of compiler back-ends, data-flow analyses inform optimizations.

Data-flow analysis has an established theoretical foundation. What lags behind is implementations of data-
flow analysis in compilers, which are usually ad-hoc. This makes such implementations difficult to extend and
maintain. In previous work researchers have proposed higher-level formalisms suitable for whole-program
analysis in a separate tool, incremental analysis within editors, or bound to a specific intermediate re-
presentation.

In this paper, we present rFLows?EC, an executable formalism for specification of data-flow analysis. FLowspec is a
domain-specific language that enables direct and concise specification of data-flow analysis for programming
languages, designed to express flow-sensitive, intra-procedural analyses. We define the formal semantics of
FLOWSPEC in terms of monotone frameworks. We describe the design of rLowsrec using examples of standard
analyses. We also include a description of our implementation of rFLowspEC.

In a case study we evaluate rLowspec with the static analyses for Green-MarL, a domain-specific programming
language for graph analytics.

* Corresponding author.
E-mail addresses: j.smits-1@tudelft.nl (J. Smits), guido.wachsmuth@oracle.com (G. Wachsmuth), e.visser@tudelft.nl (E. Visser).

https://doi.org/10.1016/j.cola.2019.100924

Received 11 August 2019; Accepted 20 September 2019

Available online 23 November 2019

2590-1184/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY /4.0/).

Documentation for FlowSpec
at the metaborg.org website.

Spoofax

The Spoofax Language Workbench

Examples

Publications

Installing Spoofax

Creating a Language Project
Using the API

Getting Support

REFERENCE MANUAL

Language Definition with Spoofax

Abstract Syntax with ATerms
Syntax Definition with SDF3
Static Semantics with NaBL2
Data-Flow Analysis with FlowSpec
1. Introduction
2. Language Reference
3. Stratego API
4. Configuration
5. Examples (under construction)
6. Bibliography
Transformation with Stratego
Dynamic Semantics with DynSem

Editor Services with ESV

| anauaane Testina with SP

http://www.metaborg.org/en/latest/source/langdev/meta/lang/flowspec/index.html

Command-

& Read the Docs

Docs » Data Flow Analysis Definition with FlowSpec O Edit on GitHub

Data Flow Analysis Definition with FlowSpec

Programs that are syntactically well-formed are not necessarily valid programs.
Programming languages typically impose additional context-sensitive requirements on
programs that cannot be captured in a syntax definition. Languages use data and
control flow to check certain extra properties that fall outside of names and type
systems. The FlowSpec ‘Flow Analysis Specification Language’ supports the
specification of rules to define the static control flow of a language, and data flow
analysis over that control flow. FlowSpec supports flow-sensitive intra-procedural data
flow analysis.

Table of Contents

¢ 1. Introduction

o 1.1. Control Flow Graphs

o 1.2. Data Flow Analysis over Control Flow Graphs
e 2. Language Reference

o 2.1. Lexical matters

o 2.2. Terms and patterns

o 2.3. Modules

o 2.4. Control Flow

o 2.5. Data Flow

o 2.6. Lattices

o 2.7. Types

o 2.8. Expressions

o 2.9. Functions
e 3. Stratego API

o 3.1. Setup

o 3.2. Running the analysis

o 3.3. Querying analysis

o 3.4. Hover text

o 3.5. Profiling information
e 4. Configuration

o 4.1. Prepare your project

0 492 Inenecting analucic reciilte

http://metaborg.org
http://www.metaborg.org/en/latest/source/langdev/meta/lang/flowspec/index.html

Data-Flow Analysis

What is Data-Flow Analysis?

Static approximation of runtime behaviour
- What has or will be computed

- What extra invariants do some data adhere to
- Data dependence between data/variables where the data lives

Available Expressions

- a + b is already computed when you get to the condition
- There is no need to compute it again

Live Variables

—— — T —

if vy > x then

Z = ¥y
else

Z =Y *Y,
X = Z

The first value of X Is never observed,
because it isn't read after the assignment

What is Data-Flow Analysis?

Static approximation of runtime behaviour
- What has or will be computed

- What extra invariants do some data adhere to
- Data dependence between data/variables where the data lives

Flow-Sensitive Types

void hello(String? name) {
if (is String name) {
// name is of type String here

print("Hello, "~ “name "!");
1
else {

print("Hello, world!"):;
1

- Ceylon (https://ceylon-lang.org/)

- Union and intersection types

- String? = String | Null

- 18 like Java’s instanceof

- General name: path-sensitive data-flow analysis

https://ceylon-lang.org/

What is Data-Flow Analysis?

Static approximation of runtime behaviour
- What has or will be computed

- What extra invariants do some data adhere to
- Data dependence between data/variables where the data lives

Reaching Definitions

Let
var x : 1nt = 5
var y\: 1nt =1
in
wh%le X'> 1 do
y/i= X * 2;
X<=vy -1
)
end

- The inverse relation of live variables
- RD gives us the possible origins of the current value of a variable

Reaching Definitions

1 Let

o | var x : int := 5 X2
3| var y\: int := 1 X2;yr3
4 | 1n

g wh:(L'Le x\> 1 do x-2,8;y~3,7

7 = X % 2;

8 1 =y -1 Xyl

9) X|—>8;yl—>7
10 |end

- Analysis result is a multi-map (shown here after each statement)
- Propagate information along the control-flow graph

—h

OCQOWOONOOILA~WN =

Reaching Definitions

let
var X : 1nt := 5 x=2 {(x,2)}
i\r:ar‘ y\: 1nt := 1 xe2;ye3 {(x,2) (y,3)}
While X'\> 1_do x=2,8y3,7 {(x,2) (x,8) (¥,3) (y,7)}
Yo T 28y-7 {(x2) (68) (1,7)}
) xe8ye7 {(X,8) (V,7)}
end

- Analysis result is a set of pairs (shown here after each statement)
- Propagate information along the control-flow graph

Control-Flow

Control-Flow

What is Control-Flow?
- “Order of evaluation”

Discuss a series of example programs
- What is the control flow?
- What constructs in the program determine that?

What is Control-Flow?

function id(x) { return x; }
id(4); id(true);

- Calling a function passes control to that function
- A return passes control back to the caller

What is Control-Flow?

if (c){a=>5}else{a="four"}

' Branching |

- Control is passed to one of the two branches
- This is dependent on the value of the condition

What is Control-Flow?

while (c){a =5}

' Looping

|

- Control is passed to the loop body depending on the condition
- After the body we start over

What is Control-Flow?

function1(a);
function2(b);

- No conditions or anything complicated
- But still order of execution

What is Control-Flow?

distance = distance + 1;

1
!
‘v

Reads and 3‘

|

- The expression needs to be evaluated, before we can save its result

What is Control-Flow?

Int 1 =2;
intj = (1=3) * I;

|

 Expressions & side-effect
. - -

< |

}]
\
. __|

o = —= —— = — —

- Order in sub-expressions is usually undefined
- Side-effects make sub-expression order relevant

Kinds of Control-Flow

- Sequential statements

- Conditional if / switch / case

- Looping while / do while / for / foreach / loop
- Exceptions throw / try / catch / finally

- Continuations call/cc

- Async-awalit threading

- Coroutines / Generators yield

- Dispatch function calls / method calls

- Loop jumps break / continue

- ... many more ...

Why Control-Flow?

Shorter code
- No need to repeat the same statement 10 times

Parametric code

- Extract reusable patterns
- Let user decide repetition amount

EXpressive power
- Playing with Turing Machines

Reason about program execution
- What happens when?
- In what order?

Control-Flow and Language Design

Imperative programming
- Explicit control-flow constructs

Declarative programming

- What, not how

- Less explicit control-flow

- More options for compilers to choose order

- Great if your compiler is often smarter than the programmer

Separation of Concerns in Data-Flow Analysis

Representation
- Represent control-flow of a program
- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language
- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

Control-Flow Graphs

What is a Control-Flow Graph?

A control flow graph (CFG) in computer science is a representation,
using graph notation, of all paths that might be traversed through a
program during its execution.

https://en.wikipedia.org/wiki/Control_flow_graph

https://en.wikipedia.org/wiki/Control_flow_graph

Control-Flow Graph Example

Let
var X : 1nt = a + b
var y : 1nt = a * b
in
while v > a + b do
(
a := a + 1;
X = a+Db
)
end

Control-Flow Graph Example

Let
var x : 1nt :
var y : 1nt :

in
while v > a + b do
(
d -
X

)

11l
Q
-
o

a + 1;
a +bDb

end

|

var X : it =a+

|

vary : b}

| S e— p— e ——

Basic Blocks

Let
var x : 1nt :
var y : 1nt :

in
while v > a + b do
(
d -
X

)

var X :

vary :
a * Db | ,-_&_

|l
Q

-
o

a + 1;
a +bDb

end

Control Flow Graphs

Nodes
- Usually innermost statements and expressions
- Or blocks for consecutive statements (basic blocks)

Edges

- Back edges: show loops

- Splits: conditionally split the control flow

- Merges: combine previously split control flow

Equivalent to Unstructured Control-Flow

,a 0 *

be—a+1] <-
a €0 e

L1: b ¢ a + 1
cC €C + D
a €2 *%b

if a < N goto L1
return c

[c - c+bj

|a < 2" b

| !

return cf

Separation of Concerns in Data-Flow Analysis

Representation
- Represent control-flow of a program
- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language
- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

Separation of Concerns in Data-Flow Analysis

Representation

g Control Flow Graphs (CFGs)
- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language
- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

Data-Flow

Data-Flow

What is Data-Flow?

- Possible values (data) that flow through the program
- Relations between those data (data dependence)

Discuss a series of example programs

- What is wrong or can be optimised?

- What is the flow we can use for this?

- What would the data-flow information look like?

What is wrong here?

public int ComputeFac(int num) {
return num;

int num_aux; —

if (num < 1)) {1
num_aux = 1; .

else :

num_aux = num * this.ComputeFac(num-1);
return num_aux;

- Most of the code is never reached because of the early return
- This is usually considered an error by compilers

What is “wrong” here?

— X < X
> 11

nd y used Later

- The first value of x is never observed

Live variable analysis |

- This is sometimes warned about by compilers

What is suboptimal here?

let | ‘ o o
var x : 1int := a + b L | | C e e
var y : int := a % b tCommcm subexpression elimination |
in ',, N — R T ———
i1f y > a + b then

(
a = a + 1;
X = a+b :
)
end

- a + b is already computed when you get to the condition
- There is no need to compute it again

What is suboptimal here?

for 1 := 1 to 100 do
(
x[i] = yli];
if w > 0 then
y[i] = ©

- The if condition is not dependenton i, x ory
- Still it is checked in the loop, which is slowing the loop

Separation of Concerns in Data-Flow Analysis

Representation

o Control Flow Graphs (CFGs)

- Conduct and represent results of data-flow analysis

Declarative Rules
- To define control-flow of a language
- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

Separation of Concerns in Data-Flow Analysis

Representation

o Control Flow Graphs (CFGs)

@l Data-flow information on CFG nodes

Declarative Rules
- To define control-flow of a language
- To define data-flow of a language

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

Separation of Concerns in Data-Flow Analysis

Representation

o Control Flow Graphs (CFGs)

@l Data-flow information on CFG nodes
Declaratlve Rules

Language-Independent Tooling
- Data-Flow Analysis

- Errors/Warnings

- Code completion

- Refactoring

- Optimisation

- —]
fA domaln spec1f1c meta 1anguage For Spoofax FlowSpeck

I

Tiger in FlowSpec

Control-Flow Rules

Map abstract syntax to control-flow (sub)graphs

- Match an AST pattern

- List all CFG edges of that AST

- Mark subtrees as CFG nodes

- Or splice In their control-flow subgraph

- Use special “context” nodes to connect subgraph to outside graph

Control-Flow Graphs in FlowSpec

FlowSpec Example program

root Mod(s) =
start - s — end

ifly > x|then
node Assign(_, _) Z = Y;

else

seq(sl, s2) -

Z =
entry — sl — s2 — exit
y = a *x b;

IfThenElse(c, t, e) = mitely > a + b|do
entry — node ¢ —» t — exit,

node c > e — exit :
nitecc,) - (o= ®

entry — node ¢ - b — node c,
hode ¢ — exit

Data-Flow Rules

Define effect of control-flow graph nodes

- Match an AST pattern on one side of a CFG edge

- Propagate the information from the other side of the edge

- Adapt that information as the effect of the matched CFG node

Live Variables in FlowSpec

A variable is live If the current value
of the variable may be read further

along in the program X}
{¥.x}

properties
live: Set(name) (x.x}

property rules
live(Ref(n) — next) =

live(next) \/ { Var{n} } {x)x}

live(Assign(n, _) — next) =
{m | m & live(next), Var{n} == m }

td
{}
{}

live(_.end) =

{}

Live Variables in FlowSpec

A variable is live if the current value
of the variable may be read further
along in the program

properties
live: Set(name)

property rules
live(Ref(n) — next) =
live(next) \/ {n}

live(Assign(n, _) — next) =
{m | mé& live(next), n == m }

live(_.end) =

{}

Available Expressions in FlowSpec

An expression Is available if it must
have been evaluated previously and
its variables not reassigned

properties
available: MustSet(term)

property rules

available(prev — Assign(n, e)) =
{ expr |
expr < available(prev) \/ {e},
I (n in reads(expr)) }

available(_.start) =

{}

Summary: Data-Flow Analysis Specification

Control-Flow

- Order of execution
- Reasoning about what is reachable

Data-Flow

- Flow of data through a program
- Reasoning about data, and dependencies between data

FlowSpec

- Control-Flow rules to construct the graph
- Annotate with information from analysis by Data-Flow rules

From Specification to Implementation

Traditional Kill/Gen Sets

Available Expressions

"An expression s available If it must have already been computed, and not later
modified, on all paths to the program point”

Kill(Assign(var, el)) =
{e2 € AIIAE | var € FV(e2) }

gen(Assign(var, el)) :=
{e2 e SE(el) | var ¢ FV(e2) }

oreviousSet \ Kill(currentNode) u gen(currentNode)

Available Expressions

“An expression is available If it must have already been computed, and not later
modified, on all paths to the program point”

{
Kill(Assign(var, e1)) =

{e2 e AllAE | var € FV(e2) } {a + b}
gen(Assign(var, e1)) = [{ti ajfil - I
{e2 e SE(el) | var ¢ FV(e2) }
{a+Db,a” Db}

U

oreviousSet \ Kill(currentNode) u gen(currentNode)

Available Expressions

“An expression is available If it must have already been computed, and not later
modified, on all paths to the program point”

{
Kill(Assign(var, e1)) =

{e2 e AllAE | var € FV(e2) } {a + b}
gen(Assign(var, el)) = [{a:‘i ajfil _ I
{e2 e SE(el) | var ¢ FV(e2) }
{a + bya=b}

U

oreviousSet \ Kill(currentNode) u gen(currentNode)

Live Variables

“A variable is live If there exists a path from there to a use of the variable, with no
re-definition of the variable on that path. ”

Kill(Assign(var, e1)) =
{var}

gen(Assign(var, e1)) :=
{FV(el)}

gen(b@BinOp(_, _, _)) :=
{ FV(b) }

gen(u@UnOp(_, _)) :=
{FV(u) }

oreviousSet \ Kill(currentNode) u gen(currentNode)

Traditional set based analysis

Sets as analysis information

Kill and gen sets per control node type
—previousSet \ kill(currentNode) u gen(currentNode)

Can propagate either forward or backward

Can merge information with either union or intersection
- Respectively called may and must analyses

Beyond Sets

let

var a :
var b :

1n

end

c .
ad -

Constant propagation and folding

int :
int :

c +
2 %

b
b

/4

0 single step

a + 1 l

full propagation

let

var a :
var b :

1n
cC -
ad -
end

. 1nt :
. 1nt :

int :
int :

cC + b;
2 * D

N O
* +

Constant propagation and folding

let

var a : int := 0 a w0
.var b : 1nt = a + 1 a0 bel
1n
C := C + b;
d - - PP
2 = 9 % b a B, b 1, c :
end awr 2, br1l, cp?

Kill/gen doesn’t work here
- We need the previous information to compute the current

Can we use a set for this map?
- Keys map to single values, so no

But what if we keep multiple values?
- Analysing loops may not terminate

Example: Non-termination

let
var a : int := 0 a0
.var b : 1nt = a + 1 ae 0 be 1l
1n
while y > a + b do a~» 0: bwr 1 aer 0,1, ber 1
a := g + 1

end apr 0,1; b1 aer 0,1,2; ber 1

Constant propagation and folding

The type of the analysis information

- Variables bound to either a particular constant or a marker for non-
constants

The transfer functions per control node
- Basically an interpreter implementation for constants
- Needs to propagate markers when found

Monotone Frameworks

Termination

Data-Flow Analysis needs fixpoint computation
- Because of loops

To terminate, there needs to be a fixpoint

- And we need to actually get to that fixpoint
- How can we check this?

A fixpoint of function f is x if f(x) = X

Lattice Theory

A set X Is totally ordered under <if fora, b, c € X
-a<baAab<a = a=Db (antisymmetry)

-a<bAbs<c = ac<c(transitivity)

- a < b v b < a (totality)

A partial ordering drops the totality constraint
- €.g. subset inclusion:

Lattice Theory

A Lattice is a partially ordered set where
- every two elements have a unigue least upper bound (or supremum or join)
- every two elements have a unigue greatest lower bound (or infimum or meet)

Least upper bound (LUB)
-aCb e aub=>b

—alUlb=c=acCcAbCLCc

Greatest lower bound (GLB)
-aCLb & anb=a

b

-alNb=c=cCaAcC

A bounded lattice has a top and bottom
- These are T and L respectively

Lattices for Data-Flow Analysis

Consider T as the coarsest approximation

- |t Is a safe approximation,
- because it says we are not sure of anything

Then we can combine data-flow information with L
- |t Is the most information preserving combination of information

Lattices for Data-Flow Analysis

Transfer functions should be monotone increasing

- I.e. for transfer function f, a C b = f(a) C f(b)

- This includes the identity function

Monotone transfer functions give a termination guarantee
- In a loop we reach a fixpoint if the functions start returning the same thing
- Worst case scenario: the loop reaches T

- This only works If the lattice is of finite height

General interval analysis has an infinite lattice

- = [—oo,oo]

- |If a loop adds a finite number to a variable, you never get to «

An analysis consists of
- The type of the analysis information

- The transfer functions that express the ‘effect’ of a control node

- The initial analysis information

An analysis consists of

- The type of the analysis information, and the lattice instance for
that type

- The transfer functions that express the ‘effect’ of a control node
>» These should be monotone with respect to the lattice

- The initial analysis information

Executing Monotone
Frameworks

Executing Monotone Frameworks

Great formal model for reasoning
- Fairly simple

- Makes intuitive sense

- Has nice mathematical properties

But how to execute?

Framework Overview

Control-flow graph

- graph

- start node

- reverse beforehand if backward analysis

Lattice instance for data-flow information:
- Lattice L
- Least Upper Bound LI

- Bottom value 1. € L

Initial data-flow information for start node

Transfer function f: (L = L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Naive Approach

start_node.value = initial_value
walk(start_node)

s

function walk(node) =
for next 1n node.successors:
next.value = node.transfer(node.value)
walk(next)

N P D N —
i

- FIne for straight-line programs

- Distributes information along splits in control-flow

- Overrides values from one path with those of another
- Recursive: great for stack overflows on loops

Using Lattices

for node in nodes:
node.value = bottom
start_node.value = 1nitial _value

walk(start_node) ‘(gLu‘

function walk(node) = ' D ﬂ K}
for next in node.successors: | {]

next.value =
next.value U node.transfer(node.value)

walk(next)

- FIne for straight-line programs

- Distributes information along splits in control-flow

- Combines values from one path with those of another
- Recursive: great for stack overflows on loops

Worklist: Iterative instead of Recursive

for node in nodes:
node.value = bottom
e = 1nitial_value

while !worklist.empty(): >
node = worklist.pop()
for next in node.successors:

oldValue = next.value ~_

newValue = node.transfer(node.value) “ |finitial_value == bottom and a

if !(newValue £ oldValue): transfer function is identity:
next.value = oldValue L newValue traversal will stop there, so don’t
worklist = worklist + [next] just start from the start_node

- FIne for straight-line programs

- Distributes information along splits in control-flow

- Combines values from one path with those of another
- Worklist: works for loops too

FlowSpec Design

Framework Overview

Control-flow graph

- graph Control-flow rules

- start node Root rule(s)
- reverse beforehand if backward analysis JIiR=lsle =% [[e=1e1i(o aRe1le 1 =i o\ VAR -1

Lattice instance for data-flow information:

- Lattice L In property definition

o Upper S
In lattice definition
- Bottom value L € L

Initial data-flow information for start node

Transfer function f: (L = L) per control-flow graph node
- Denotes the data-flow effect of the CFG node

Variants of Data-Flow Analysis

Many Interacting features

Itr—roeedl with dynamic dispatch means dynamic control flow
analysis dependig on the daa flow analysis

- Different kind of tt for dynamlc dispatch
> Different contexts for the same program point are separately tracked
> Call-sensitivity: limited “stacktrace”, call-path is tracked

> Object-sensitivity: objects are tracked by the allocation point in the
program

Worklist Optimizations
in FlowSpec

Worklist Algorithm Optimizations

Filter irrelevant CFG nodes
- With transfer function tf(x) = x

Order nodes
- Topological order would make sense
- But there are cycles in our graphs

- Every cycle should be computed to a fixpoint
» Really we need each strongly connected component (SCC)

- Tarjan’s SCCs algorithm gives SCCs in reverse topological order!

- Within each SCC the order should also not be random:
> \We use the reverse post-order of the spanning tree

Tarjan’s SCC algorithm

Strongly Connected Component (SCC) identification

- Label nodes with a increasing integers during a depth-first searches
> Multiple searches to make sure you reach all nodes in the graph

- The depth-first spanning forest (spanning trees from the searches)
holds SCCs as subtrees

- Nodes that can reach the same lowest label are an SCC together

The version in FlowSpec is slightly adapted

- To return the topological order instead of the reverse topo order
- To have reverse postorder inside SCCs

CFG filtering

Tarjan’s SCC algorithm

Tarjan’s SCC algorithm

T
a
ra
nl
S
S
CC al
go
rit
h
m

E

Reverse postorder in SCC

Conclusion

Summary

Data-flow analysis and its uses

- Sets are not enough
- Lattices are the generalisation

Monotone Frameworks
- Finite height lattices + monotone transfer functions = termination
- Execute by worklist algorithm

FlowSpec design
- FlowSpec only does intra-procedural, flow-sensitive analysis

- Worklist algorithm with optimisations:
» SCCs, reverse post-order within SCC, CFG filtering

Except where otherwise noted, this work is licensed under

()

94

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

