Code Generation Mechanics

Eelco Visser

]
TUDelft

CS4200 | Compiler Construction | January 13, 2022

Code Generation Mechanics

Code generation

- Input: AST of source language program
> with name and type annotations

- Output: machine instructions

Mechanics

- What techniques are available to define translation?
- What are the advantages and disadvantages of these techniques?
- To what extent do these techniques help with verification

Code Generation by
String Manipulation

Printing Strings as Side Effect

to-jbc = ?N11() ;. <printstring> "aconst_null\n"
to-jbc = ?NoVal() ; <printstring> "nop\n"
to-jbc = ?Seq(es) ; <list-loop(to-jbc)> es
to-jbc =
?Int(1);

<printstring> "ldc ";
<printstring> 1;
<printstring> "\n"

to-jbc = 7Bop(op, el, e2) ; <to-jbc> el ; <to-jbc> e2 ; <to-jbc> op
to-jbc = ?PLUS() ; <printstring> "iadd\n"
to-jbc = ?MINUS() ; <printstring> "isub\n"
to-jbc = MULQ) ;. <printstring> "imul\n"

to-jbc = ?DIV() ; <printstring> "idiv\n"

String Concatenation

to-jbc:
to-jbc:
to-jbc:
to-jbc:
to-jbc:
to-jbc:
to-jbc:
to-jbc:
to-jbc:

Ni1l()
NoVal()
Seq(es)

-> "aconst_null\n"
-> "'nop\n"
-> <concat-strings> <map(to-jbc)> es

Int(i) -> <concat-strings> ["ldc ", 1, "\n"]

Bop(op,

PLUS()
MINUS()
MUL()
DIV()

el, e2) -> <concat-strings> [<to-jbc> el,
<to-jbc> €2,
<to-jbc> op]

-> "1add\n"
-> "1sub\n"
-> "1mul\n"
-> "1div\n"

String Interpolation

to-jbc: N1i1() -> $[aconst_null]
to-jbc: NoVal() -> $[nhop]
to-jbc: Seq(es) -> <map-to-jbc> es

map-to-jbc: [] -> $[]
map-to-jbc: [hlt] ->
$[[<to-jbc> h

<map-to-jbc> t]]

to-jbc: Int(i) -> $[ldc [1i]]
to-jbc: Bop(op, el, e2) ->

$[[<to-jbc> el
<to-jbc> el
<to-jbc> op]

to-jbc: PLUSC) -> $[iadd]
to-jbc: MINUS() -> $[isub]
to-jbc: MUL(O) -> $[imul]
to-jbc: DIV -> $[idiv]

Summary: Code Generation by String Manipulation

Printing strings

- Generated code depends on order of traversal of the AST
- Explicit layout (whitespace) management

- Verbose gquotation and anti-quotation

- Escaping meta-variables

- Easy to make syntax errors

- Output needs to be parsed for further processing

String concatenation
- Makes generation order independent

String interpolation (templates)
- Makes quotation and anti-quotation more concise
- Layout (whitespace) from template layout

Correctness of String-Based Code Generators

All bets are off

- Only guarantee is that you get some text
- String interpolation may help with producing readable code
- Very easy to make even trivial syntactic errors

Verification

- Use target code checker for verification
- No input independent guarantees

Code Generation by
Term Transformation

Code Generation by Transformation

AST to AST translation

- input: source language AST
- output: target language AST

Defined using term rewrite rules

- Recognise AST pattern for language construct
- Recursively translate sub-terms
- Compose results with target code schema for language construct

Intermediate representation (IR)

to-jbc:
to-jbc:
to-jbc:

to-jbc:
to-jbc:

to-jbc:

to-jbc:
to-jbc:
to-jbc:
to-jbc:

to-jbc:

to-jbc: Var(x) -> [ILOAD(x)] where <type-of> Var(x) => INT()
to-jbc: Var(x) -> [ALOAD(x)] where <type-of> Var(x) => STRING()
lhs-to-jbc: Var(x) -> [ISTORE(x)] where <type-of> Var(x) => INT()
lhs-to-jbc: Var(x) -> [ASTORE(x)] where <type-of> Var(x) => STRING()

Code Generation by Transformation: Example

Nil() -> [ACONST_NULL(QO)]

NoVal() -> [NOP()]

Seq(es) -> <mapconcat(to-jbc)> es . : ,
to-jbc : Exp -> List(Instruction)

Int(i) -> [LDCCInt(1))]

String(s) -> [LDC(String(s))]

Bop(op, el, e2) -> <mapconcat(to-jbc)> [el, eZ2, op]

PLUSC) -> [IADD() _

MINUS() -> [ISUBQ)

MUL(O -> [IMULO °

DIV() -> [IDIV(O) _

Assign(lhs, e) -> <concat> [<to-jbc> e, <lhs-to-jbc> lhs]

Code Generation by Transformation: Example

to-jbc:
IfThenElse(el, e2, e3) -> <concat> [<to-jbc> el
, [IFEQ(LabelRef(else))]
, <to-jbc> e2
, [GOTO(LabelRef(end)), Label(else)]
, <to-jbc> e3

, | Label(end)]
]

where <newnhame> "else" => else

where <newname> "end" => end

to-jbc:
While(el, e2) -> <concat> [[GOTO(LabelRef(check)), Label(body)]
<to-jbc> eZ
[Label(check)]
<to-jbc> el
, [IFNECLabelRef(body))]

1

where <newname> "test" => check
where <newname> "body" => body

Code Generation by Transformation

Compiler component composition
- AST output can be consumed by compatible AST transformations

Example compilation pipeline

- Parse source language text => source language AST
- Desugar => source language AST

- Type-check => annotated source language AST

- Translate => target language AST

- Optimize => target language AST

- Pretty-print => target language text

Easy to extend with new components

Guaranteeing Syntactically
Correct Target Code

Syntactically Correct Target Code

Property: Syntactically correct target code
- Guarantee that generated code parses

Type correct AST = syntactically correct code
- AST types represent syntactic categories

p Plus: Exp * Exp -> Exp
- [ype check translation patterns

Language support

- Any programming language with a static type system
- And support for algebraic data types

Note: lexical syntax

Type Checking Transformation Rules

module Tiger-Condensed

signature
constructors

Var
String
Seq
Call
Plus
Minus
Assign
If
Let
VarDec
FunctionDec
FunDec
FArg
NoTp

Tp

: Exp *
: Var *
: Exp *
: List(Dec) * List(Exp) -> Exp

: Id * TypeAn * Exp -> Dec

: List (FunDec) -> Dec

: Id * List(FArg) * TypeAn * Exp -> FunDec
: Id * TypeAn -> FArg

: TypeAn

: Typeld -> TypeAn

: Id -> Var

: StrConst -> Exp
: List(Exp) -> Exp
: Var *
: Exp *

List (Exp) -> Exp
Exp -> Exp
Exp -> Exp
Exp -> Exp
Exp * Exp -> Exp

module Tiger-TraceAll
imports Tiger-Typed lib Tiger-Simplify
strategies
instrument = topdown(try(TraceProcedure + TraceFunction)) ;
IntroducePrinters; simplify
rules
TraceProcedure :
FunDec(f, xs, NoTp, e) ->
FunDec(f, xs, NoTp,
Seq([Call(Var("enterfun"), [String(f)]), e,
Call(Var("exitfun"), [String(£)])]))
TraceFunction :
FunDec(f, xs, Tp(tid), e) ->
FunDec(f, xs, Tp(tid),
Seq([Call(Var("enterfun"), [String(£f)]),
Let ([VarDec (x,Tp(tid) ,NilExp)],
[Assign(Var(x), e),
Call(Var("exitfun"), [String(f)]),
Var(x)]1)1))
where new => x
IntroducePrinters :
e -> /* omitted for brevity */

Type checking terms In rules guarantees
syntactic correctness of generated code

10

Guaranteeing Syntactically Correct Target Code in Stratego?

Stratego 1

- Only checks arities of constructor applications, not types
- Transformation rules could be checked by the compiler
- Generic traversals make traditional type checking impossible

Workaround
- Meta-programming with concrete object syntax

Stratego 2
- A static analysis for Stratego that guarantees syntactic correctness

This paper defines a generic technique for embedding the
concrete syntax of an object language into a meta-
programming language.

Applied to Stratego as meta-language and Tiger as object
language.

Combines two advantages

- guarantee syntactic correctness of match and build patterns
- make rules more readable

https://do1i.org/10.1007/3-540-45821-2_19

Meta-programming with Concrete Object
Syntax

Eelco Visser

Institute of Information and Computing Sciences, Universiteit Utrecht, P.O. Box
80089, 3508 TB Utrecht, The Netherlands. http://www.cs.uu.nl/"visser,
visser@acm.org

Abstract. Meta programs manipulate structured representations, ie.,
abstract syntax trees, of programs. The conceptual distance between the
concrete syntax meta-programmers use to reason about programs and
the notation for abstract syntax manipulation provided by general pur-
pose (meta-) programming languages is too great for many applications.
In this paper it is shown how the syntax definition formalism SDF can
be employed to fit any meta-programming language with concrete syn-
tax notation for composing and analyzing object programs. As a case
study, the addition of concrete syntax to the program transformation
language Stratego is presented. The approach is then generalized to ar-
bitrary meta-languages.

1 Introduction

Meta-programs analyze, generate, and transform object programs. In this pro-
cess object programs are structured data. It is common practice to use ab-
stract syntax trees rather than the textual representation of programs [10]. Ab-
stract syntax trees are represented using the data structuring facilities of the
meta-language: records (structs) in imperative languages (C), objects in object-
oriented languages (C++, Java), algebraic data types in functional languages
(ML, Haskell), and terms in term rewriting systems (Stratego).

Such representations allow the full capabilities of the meta-language to be
applied in the implementation of meta-programs. In particular, when working
with high-level languages that support symbolic manipulation by means of pat-
tern matching (e.g., ML, Haskell) it is easy to compose and decompose abstract
syntax trees. For meta-programs such as compilers, programming with abstract
syntax is adequate; only small fragments, i.e., a few constructors per pattern, are
manipulated at a time. Often, object programs are reduced to a core language
that only contains the essential constructs. The abstract syntax can then be used
as an intermediate language, such that multiple languages can be expressed in
it, and meta-programs can be reused for several source languages.

However, there are many applications of meta-programming in which the use
of abstract syntax is not satisfactory since the conceptual distance between the

D. Batory, C. Consel, and W. Taha (Eds.): GPCE 2002, LNCS 2487, pp. 299-(315, 2002,
© Springer-Verlag Berlin Heidelberg 2002

Concrete Object Syntax

module Tiger-TraceAll
imports Tiger-Typed lib Tiger-Simplify
strategies
instrument = topdown(try(TraceProcedure + TraceFunction)) ;
IntroducePrinters; simplify
rules
TraceProcedure :
FunDec(f, xs, NoTp, e) ->
FunDec(f, xs, NoTp,
Seq([Call(Var("enterfun"), [String(f)]), e,
Call(Var("exitfun"), [String(£)])]))
TraceFunction :
FunDec(f, xs, Tp(tid), e) ->
FunDec(f, xs, Tp(tid),
Seq([Call(Var("enterfun"), [String(£f)]),
Let ([VarDec (x,Tp(tid) ,NilExp)],
[Assign(Var(x), e),
Call(Var("exitfun"), [String(f)]),
Var(x)]1)1))
where new => x
IntroducePrinters :
e -> /* omitted for brevity */

Abstract syntax transformation

module Tiger-TraceAll
imports Tiger-Typed lib Tiger-Simplify
strategies

instrument = topdown(try(TraceProcedure + TraceFunction)) ;
IntroducePrinters; simplify

rules
TraceProcedure :
[[function f(xs) = e]] ->

[[function f(xs) = (enterfun(s); e

where !'f => s
TraceFunction :
[[function f(xs) : tid
[[function f(xs) : tid
(enterfun(s);
let var x : tid := nil in x
where new => x ; !'f => s
IntroducePrinters :
e => [[let var ind := 0

e 11 ->

function enterfun(name :

ind := +(ind, 1);
for i := 2 to ind do
print(name); print ("

function exitfun(name :

for i1 := 2 to ind do

ind := -(ind, 1);

print(name); print("
in e end]]

; exitfun(s)) 1]

:= e; exitfun(s); x end)]]

string) = (

print(" n);
entry\\n"))
string) = (
print(" n);

exit\\n"))

Concrete syntax transformation

19

Implementing Concrete Object Syntax

module StrategoTiger
imports
Tiger Tiger-Sugar Tiger-Variables Tiger-Congruences
imports
Stratego [Id => Strategold
Var => StrategoVar
StrChar => StrategoStrChar]

exports
context-free syntax

"[[" Dec "]1" => Term {cons("ToTerm") ,prefer}
"[[" FunDec "]]" => Term {cons("ToTerm") ,prefer}
"[[" Exp "]J1" -> Term {cons("ToTerm") ,prefer}
"' Term -> Exp {cons("FromTerm") ,prefer}
"“x" Term -> {Exp ","}+ A{cons("FromTerm")}

"“x" Term -> {Exp ";"}+ A{cons("FromTerm")}

"' Term -> Id {cons ("FromTerm") }

"“x" Term -> {FArg ","}+ {cons("FromTerm") }

Embedding of object language into meta language

20

From Concrete Syntax to Abstract Syntax

[[x := let ds in “* es end]] -> [[let ds in x := ("% es) end]]

<~ barse

Rule (ToTerm(Assign(Var(meta-var("x")),
Let (meta-var("ds"),FromTerm(Var("es"))))),
ToTerm(Let (meta-var("ds"),
[Assign(Var (meta-var("x")),
Seq(FromTerm(Var("es"))))]1)))

U~ explode

Rule (Op("Assign", [Op("Var", [Var("x")]),
Op("Let", [Var("ds") ,Var("es")])]),
Op("Let", [Var("ds"),
Op("Cons", [Op("Assign", [Op("Var", [Var("x")]),
Op("Seq", [Var("es")]1)]),
Op("Nil",[1)1)1))

N4 pretty-print

Assign(Var(x),Let(ds,es)) -> Let(ds, [Assign(Var(x),Seq(es))])

Mixed AST

Pure AST

21

Meta Explode

module meta-explode
imports lib Stratego
strategies
meta-explode =
alltd(?ToTerm(<trm-explode>) + ?ToStrategy(<str-explode>)) Find term embedding

trm-explode =
TrmMetaVar <+ TrmStr <+ TrmFromTerm <+ TrmFromStr <+ TrmAnno
<+ TrmConc <+ TrmNil <+ TrmCons <+ TrmOp

TrmOp : op#(ts) -> Op(op, <map(trm-explode)> ts)

Explode it
TrmMetaVar : meta-var(x) -> Var(x)
TrmStr = is-string; !Str(<id>)
TrmFromTerm = 7?FromTerm(<meta-explode>)
TrmFromStr = 7FromStrategy(<meta-explode>)
TrmAnno = Anno (trm-explode, meta-explode) How do you type check that?
TrmNil . [0 -> op("Nil", [1)
TrmCons . [x | xs] -> 0Op("Cons", [<trm-explode>x, <trm-explode>xs])
TrmConc : Conc(tsl,ts2) ->

<foldr(!<trm-explode> ts2,
'0p("Cons", [<Fst>, <Snd>]), trm-explode)> tsl

22

The concrete syntax embedding techniques is not
specific to Stratego as meta-language. This paper
shows how to use it to embed DSLs into Java.

ATerm x = id |[propertyChangeListeners] ;
ATerm stm = bstm |[{
if (z == null) return:
PropertyChangeEvent event =
new PropertyChangeEvent(this, f, vi, v1);
for(int c=0; c < z.size(); c++) {
((...)z.elementAt (c)).propertyChange(event) ;

}

https://do1.org/10.1145/1035292.1029007

Concrete Syntax for Objects

Domain-Specific Language Embedding and Assimilation without Restrictions

Martin Bravenboer

Institute of Information and Computing Sciences

Universiteit Utrecht, P.O. Box 80089
3508 TB Utrecht, The Netherlands

martin@cs.uu.nl

ABSTRACT

Application programmer’s interfaces give access to domain
knowledge encapsulated in class libraries without providing
the appropriate notation for expressing domain composition.
Since object-oriented languages are designed for extensibil-
ity and reuse, the language constructs are often sufficient
for expressing domain abstractions at the semantic level.
However, they do not provide the right abstractions at the
syntactic level. In this paper we describe METABORG, a
method for providing concrete syntaz for domain abstrac-
tions to application programmers. The method consists
of embedding domain-specific languages in a general pur-
pose host language and assimilating the embedded domain
code into the surrounding host code. Instead of extending
the implementation of the host language, the assimilation
phase implements domain abstractions in terms of existing
APIs leaving the host language undisturbed. Indeed, META-
BORG can be considered a method for promoting APIs to
the language level. The method is supported by proven and
available technology, i.e. the syntax definition formalism
SDF and the program transformation language and toolset
Stratego/ XT. We illustrate the method with applications
in three domains: code generation, XML generation, and
user-interface construction.

Categories and Subject Descriptors

D.1.5 [Programming Techniques|: Object-oriented Pro-
gramming; D.2.3 [Software Engineering|: Coding Tools
and Techniques; D.2.3 [Programming Languages|: Pro-
Cessors

General Terms: Languages, Design

Keywords: METABORG, Stratego, SDF, Embedded Lan-
guages, Syntax Extension, Extensible Syntax, Domain-Spe-
cific Languages, Rewriting, Meta Programming, Concrete
Object Syntax

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

Eelco Visser

Institute of Information and Computing Sciences

Universiteit Utrecht, PO. Box 80089
3508 TB Utrecht, The Netherlands

visser@acm.org

1. INTRODUCTION

Class libraries encapsulate knowledge about the domain
for which the library is written. The application program-
mer’s interface to a library is the means for programmers
to access that knowledge. However, the generic language
of method invocation provided by ob ject-oriented languages
does often not provide the right notation for expressing
domain-specific composition. General purpose languages,
particularly object-oriented languages, are designed for ex-
tensibility and reuse. That is, language concepts such as
objects, interfaces, inheritance, and polymorphism support
the construction of class hierarchies with reusable implemen-
tations that can easily be extended with variants. Thus, OO
languages provide the flexibility to develop and evolve APIs
according to growing insight into a domain.

Although these facilities are often sufficient for express-
ing domain abstractions at the semantic level, they do not
provide the right abstractions at the syntactic level. This is
obvious when considering the domain of arithmetic or logical
operations. Most modern languages provide infix operators
using the well known notation from mathematics. Program-
mers complain when they have to program in a language
where arithmetic operations are made available in the same
syntax as other procedures. Consider writing el + e2 as
add(el, e2) oreven x := el; x.add(e2). However, when
programming in other domains such as code generation, doc-
ument processing, or graphical user-interface construction,
programmers are forced to express their designs using the
generic notation of method invocation rather than a more
appropriate domain notation. Thus programmers have to
write code such as

JPanel panel =
new JPanel (new BorderLayout(12,12));
panel .setBorder (
BorderFactory. createEmptyBorder(15,15,15,15));

in order to construct a user-interface, rather than using a
more compositional syntax reflecting the nice hierarchical
structure of user-interface components in the Swing library.
Building in syntactic support for such domains in a gen-
eral purpose language is not feasible, however, because of
the different speeds at which languages and domain abstrac-
tions develop. A language should strive for stability, while
libraries can be more volatile.

In this paper we describe METABORG, a method for pro-
viding concrete syntaxr for domain abstractions to appli-
cation programmers. The method consists of embedding

23

This paper generalizes the concrete syntax technigues
to all sorts of host and guest languages, with an
application to preventing injection attacks.

Injection attacks are caused by unhygienic
construction of code through which user input can be
turned into executable code.

do1:10.1016/7.sc1co.2009.05.004

Science of Computer Programming 75 (2010) 473-495

Contents lists available at ScienceDirect ience of Computer

rogramming

Science of Computer Programming i

journal homepage: www.elsevier.com/locate/scico

Preventing injection attacks with syntax embeddings®

Martin Bravenboer®*, Eelco Dolstra®, Eelco Visser®

4 Department of Computer Science, University of Massachusetts Amherst, 140 Governors Drive, Amherst, MA 01003, USA
b Department of Software Technology, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

ARTICLE INFO ABSTRACT
Article history: Software written in one language often needs to construct sentences in another language,
Received 7 March 2008 such as SQL queries, XML output, or shell command invocations. This is almost always

Received in revised form 18 May 2009
Accepted 21 May 2009
Available online 31 May 2009

done using unhygienic string manipulation, the concatenation of constants and client-
supplied strings. A client can then supply specially crafted input that causes the constructed
sentence to be interpreted inan unintended way, leading to an injection attack. We describe
a more natural style of programming that yields code that is impervious to injections by

ﬁiﬁ?{fémcks construction. Our approach embeds the grammars of the guest languages (e.g. SQL) into that
Security of the host language (e.g. Java) and automatically generates code that maps the embedded
Syntax embedding language to constructs in the host language that reconstruct the embedded sentences,
Program generation adding escaping functions where appropriate. This approach is generic, meaning thatitcan
Program transformation be applied with relative ease to any combination of context-free host and guest languages.
Concrete object syntax © 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we propose using syntax embedding to prevent injection vulnerabilities in a language-independent way.
Injections form a very common class of security vulnerabilities [22]. Software written in one language often needs
to construct sentences in another language, such as SQL, XQuery, or XPath queries, XML output, or shell command
invocations. This is almost always done using unhygienic string manipulation, whereby constant and client-supplied strings
are concatenated to form the sentence. Consider for example the following piece of server-side Java code that authenticates
a remote HTTP user against a database, where getParam() returns a string supplied by the user, for instance through a form
field:

String userName = getParam("userName");
String password = getParam("password");
String query = "SELECT id FROM users "

+ "WHERE name = ’" + userName + "2 "
+ "AND password = ’" + password + "’";

if (executeQuery(query).size() == 0)
throw new Exception("bad user/password");

On testing, this code may appear to work correctly, but it is vulnerable to a very common security flaw. For instance, if the
user specifies as the password the string > OR ’x’ = ’x, then the constructed SQL query will be

SELECT id FROM users WHERE name = ’...” AND password = ’’ OR ’x’ = ’x’

“ An earlier version appeared in GPCE'07: Proceedings of the 6th International Conference on Generative Programming and Component Engineering.
N Corresponding author.
E-mail addresses: martin.bravenboer@acm.org (M. Bravenboer), e.dolstra@tudelft.nl (E. Dolstra), visser@acm.org (E. Visser).

0167-6423/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.s¢ico0.2009.05.004

24

Hygienic

Susername = $_GEI[username’]; $username = $_GET[’username’];
22e2ut2§852§ ;,FROM users WHERE username = . Jusername . ' $q = <| SELECT * FROM users WHERE username = ${$username} |>:
a7 executeSQL($qg->toString());

SOL in PHP: SQL injection vulnerability SOL in PHP

String e = "/users[@name="" + name + and " +
"@password="" + password + "’']";
factory.newXPath() .evaluate(e, doc);

XPath in Java: XPath injection vulnerability XPath in Java

XPath e = {- /users[@name=${name} and @password=${password}] -};
factory.newXPath() .evaluate(e.toString(), doc);

$searchfilter = "(cn=" . $username . ")": $searchfilter = (| (cn=$($username)) |);

$search = ldap_search($connection, $directory, $searchfilter); $search = ldap_search($connection, $directory, $searchfilter->toString());

LDAP in PHP: LDAP injection vulnerability LDAP in PHP

$command = "svn cat \"file name\" -r" . $rev; $command = <| svn cat "file name"” -r${Srev} |>;
system($command) ; system($command->toString());

Shell calls in PHP: command injection vulnerability Shell calls in PHP

String topic = getParam("topic"); String topic = getParam("topic"); . .
String query = "SELECT body FROM comments WHERE topic = '" + topic + "’'"; SQL query = <| SELECT body FROM comments WHERE topic = ${topic} [>;
ResultSet results = executeQuery(query); ResultSet results = executeQuery(query.toString());
foreach (String body : results) foreach (String body : results)

println("<tr><td>" + body + "</td></tr>"); println(<tr><td>${body}</td></tr>.toString());

XML and SQL in Java: XSS vulnerability XML and SQL in Java

A Generic Architecture

Host support | | Guest language support
—>@generator
Host
syntax Guest Guest (support

definition syntax escaping y
7 definition definition

\ 7 o %

y

Host + q ¢

H
guests Assimilat solcj)rsc:e B Host compiler
source el file / interpreter

V suppcy 4

Hygienic Transformations

Hygienic Transformations

module Tiger-TraceAll
imports Tiger-Typed 1lib Tiger-Simplify
strategies

instrument = topdown(try(TraceProcedure + TraceFunction));

IntroducePrinters; simplify

rules
TraceProcedure :
FunDec(f, xs, NoTp, e) ->
FunDec(f, xs, NoTp,
Seq([Call(Var("enterfun"), [String(f)]), e,
Call(Var("exitfun"), [String(£f)])]))

TraceFunction :
FunDec(f, xs, Tp(tid), e) ->
FunDec(f, xs, Tp(tid),
Seq([Call(Var("enterfun"), [String(f)]),
Let ([VarDec (x,Tp(tid) ,NilExp)],
[Assign(Var(x), e),

Call(Var("exitfun"), [String(f)]),
Var(x)]1)1))

where new => Xx
IntroducePrinters :

e -> /* omitted for brevity */

Does new variable in TraceProcedure not capture variables in e?

Guaranteeing Hygiene

Guarantee that variables are not captured
- Which variables?

Object language name analysis for transformation rules
- E.g. apply Tiger constraint rules to patterns in rules

Existing approaches

- Hygienic macros in Scheme/Racket
- Higher-order abstract syntax
- Nominal abstract syntax

Research
- Hygienic transformations for more complex binding patterns

Intrinsically Typed Compilation with Nameless Labels

ARJEN ROUVOET, Delft University of Technology, The Netherlands
ROBBERT KREBBERS, Radboud University and Delft University of Technology, The Netherlands
EELCO VISSER, Delft University of Technology, The Netherlands

To avoid compilation errors it is desirable to verify that a compiler is type correct—i.e., given well-typed
source code, it always outputs well-typed target code. This can be done intrinsically by implementing it as a
function in a dependently typed programming language, such as Agda. This function manipulates data types
of well-typed source and target programs, and is therefore type correct by construction. A key challenge
in implementing an intrinsically typed compiler is the representation of labels in bytecode. Because label
names are global, bytecode typing appears to be inherently a non-compositional, whole-program property.
The individual operations of the compiler do not preserve this property, which requires the programmer to
reason about labels, which spoils the compiler definition with proof terms.

In this paper, we address this problem using a new nameless and co-contextual representation of typed
global label binding, which is compositional. Our key idea is to use linearity to ensure that all labels are defined
exactly once. To write concise compilers that manipulate programs in our representation, we develop a linear,
dependently typed, shallowly embedded language in Agda, based on separation logic. We show that this
language enables the concise specification and implementation of intrinsically typed operations on bytecode,
culminating in an intrinsically typed compiler for a language with structured control-flow.

CCS Concepts: « Software and its engineering — Compilers; « Theory of computation — Separation
logic; Logic and verification.

Additional Key Words and Phrases: Compilation, Type safety, Code transformations, Agda, Co-contextual
typing, Nameless, Intrinsically typed, Dependent types, Proof relevance

ACM Reference Format:
Arjen Rouvoet, Robbert Krebbers, and Eelco Visser. 2021. Intrinsically Typed Compilation with Nameless
Labels. Proc. ACM Program. Lang. 5, POPL, Article 22 (January 2021), 28 pages. https://doi.org/10.1145/3434303

1 INTRODUCTION

Compilers that go wrong turn correct source programs into incorrect target programs. Verifying
functional correctness of compilers offers a complete solution, proving a strong relation between
the semantics of the source and the target of compilation. The most extensive and well-known
projects in this direction are CompCert [Leroy 2009] and CakeML [Kumar et al. 2014], which
provide a fully verified compiler for the C and ML programming language, respectively. The great
confidence in such compilers comes at the price of the research and development that is required to
establish its correctness. Projects like CompCert and CakeML are the result of a decade of work into
specifying the semantics of the (intermediate) languages involved in the compiler, and specifying
and proving the simulations between these semantics. If we want to avoid these costs of functional

Authors’ addresses: Arjen Rouvoet, Delft University of Technology, The Netherlands, a.j.rouvoet@tudelft.nl; Robbert

Krebbers, Radboud University and Delft University of Technology, The Netherlands, mail@robbertkrebbers.nl; Eelco Visser,
Delft University of Technology, The Netherlands, e.visser@tudelft.nl.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/1-ART22
https://doi.org/10.1145/3434303

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 22. Publication date: January 2021.

Guaranteeing Type Correct
Target Code

Guaranteeing Type Correct Code

Property: Type correct target code
- Guarantee that generated code type checks

Intrinsically-typed ASTs

- Encode type system in algebraic signature
- Including binding structure

- Language support: Generalized ADTs

Research
- Advanced type systems & binding patterns

Semantics Preservation

Interface Preservation

Generated code has same interface as source code

Type Preservation

Generated code produces values with the same type

Intrinsically-typed interpreters

- POPL’18: imperative languages

- CPP’20: linear languages

- Verity that interpreters are type preserving
- Including non-lexical binding patterns

Research
- how to do this for other transformations?

Dynamic Semantics Preservation

Semantics preservation
- Generated code has the same behaviour as the source program

CompCert
- Certified C compiler

- Defines operational semantics of source language (most of C) and all
Intermediate languages

- Mechanically verify that translations between IR preserve behaviour
> For all possible programs

- Or: verify that generated output has same behaviour as input
> For programs that compiler is applied to

Except where otherwise noted, this work is licensed under

()

37

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

