
Code Generation Mechanics

CS4200 | Compiler Construction | January 13, 2022

Eelco Visser

Code generation

- Input: AST of source language program

‣ with name and type annotations

- Output: machine instructions

Mechanics

- What techniques are available to define translation?

- What are the advantages and disadvantages of these techniques?

- To what extent do these techniques help with verification?

Code Generation Mechanics

Code Generation by
String Manipulation

Printing Strings as Side Effect

4

to-jbc = ?Nil() ; <printstring> "aconst_null\n"
to-jbc = ?NoVal() ; <printstring> "nop\n"
to-jbc = ?Seq(es) ; <list-loop(to-jbc)> es

to-jbc =
 ?Int(i);
 <printstring> "ldc ";
 <printstring> i;
 <printstring> "\n"

to-jbc = ?Bop(op, e1, e2) ; <to-jbc> e1 ; <to-jbc> e2 ; <to-jbc> op

to-jbc = ?PLUS() ; <printstring> "iadd\n"
to-jbc = ?MINUS() ; <printstring> "isub\n"
to-jbc = ?MUL() ; <printstring> "imul\n"
to-jbc = ?DIV() ; <printstring> "idiv\n"

String Concatenation

5

to-jbc: Nil() -> "aconst_null\n"
to-jbc: NoVal() -> "nop\n"
to-jbc: Seq(es) -> <concat-strings> <map(to-jbc)> es

to-jbc: Int(i) -> <concat-strings> ["ldc ", i, "\n"]

to-jbc: Bop(op, e1, e2) -> <concat-strings> [<to-jbc> e1,
 <to-jbc> e2,
 <to-jbc> op]

to-jbc: PLUS() -> "iadd\n"
to-jbc: MINUS() -> "isub\n"
to-jbc: MUL() -> "imul\n"
to-jbc: DIV() -> "idiv\n"

String Interpolation

6

to-jbc: Nil() -> $[aconst_null]
to-jbc: NoVal() -> $[nop]
to-jbc: Seq(es) -> <map-to-jbc> es

map-to-jbc: [] -> $[]
map-to-jbc: [h|t] ->
 $[[<to-jbc> h]
 [<map-to-jbc> t]]

to-jbc: Int(i) -> $[ldc [i]]  
to-jbc: Bop(op, e1, e2) ->
$[[<to-jbc> e1]
 [<to-jbc> e2]
 [<to-jbc> op]]

to-jbc: PLUS() -> $[iadd]
to-jbc: MINUS() -> $[isub]
to-jbc: MUL() -> $[imul]
to-jbc: DIV() -> $[idiv]

Printing strings

- Generated code depends on order of traversal of the AST

- Explicit layout (whitespace) management

- Verbose quotation and anti-quotation

- Escaping meta-variables

- Easy to make syntax errors

- Output needs to be parsed for further processing

String concatenation

- Makes generation order independent

String interpolation (templates)

- Makes quotation and anti-quotation more concise

- Layout (whitespace) from template layout

Summary: Code Generation by String Manipulation

All bets are off

- Only guarantee is that you get some text

- String interpolation may help with producing readable code

- Very easy to make even trivial syntactic errors

Verification

- Use target code checker for verification

- No input independent guarantees

Correctness of String-Based Code Generators

Code Generation by
Term Transformation

AST to AST translation

- input: source language AST

- output: target language AST

Defined using term rewrite rules

- Recognise AST pattern for language construct

- Recursively translate sub-terms

- Compose results with target code schema for language construct

Intermediate representation (IR)

Code Generation by Transformation

Code Generation by Transformation: Example

to-jbc: Nil() -> [ACONST_NULL()]
to-jbc: NoVal() -> [NOP()]
to-jbc: Seq(es) -> <mapconcat(to-jbc)> es

to-jbc: Int(i) -> [LDC(Int(i))]
to-jbc: String(s) -> [LDC(String(s))]

to-jbc: Bop(op, e1, e2) -> <mapconcat(to-jbc)> [e1, e2, op]

to-jbc: PLUS() -> [IADD()]
to-jbc: MINUS() -> [ISUB()]
to-jbc: MUL() -> [IMUL()]
to-jbc: DIV() -> [IDIV()]

to-jbc: Assign(lhs, e) -> <concat> [<to-jbc> e, <lhs-to-jbc> lhs]

to-jbc: Var(x) -> [ILOAD(x)] where <type-of> Var(x) => INT()
to-jbc: Var(x) -> [ALOAD(x)] where <type-of> Var(x) => STRING()
lhs-to-jbc: Var(x) -> [ISTORE(x)] where <type-of> Var(x) => INT()
lhs-to-jbc: Var(x) -> [ASTORE(x)] where <type-of> Var(x) => STRING()

to-jbc : Exp -> List(Instruction)

Code Generation by Transformation: Example

to-jbc:
 IfThenElse(e1, e2, e3) -> <concat> [<to-jbc> e1

, [IFEQ(LabelRef(else))]
, <to-jbc> e2
, [GOTO(LabelRef(end)), Label(else)]
, <to-jbc> e3
, [Label(end)]
]

 where <newname> "else" => else
 where <newname> "end" => end

to-jbc:
 While(e1, e2) -> <concat> [[GOTO(LabelRef(check)), Label(body)]

, <to-jbc> e2
, [Label(check)]
, <to-jbc> e1
, [IFNE(LabelRef(body))]
]

 where <newname> "test" => check
 where <newname> "body" => body

Compiler component composition

- AST output can be consumed by compatible AST transformations

Example compilation pipeline

- Parse source language text => source language AST

- Desugar => source language AST

- Type-check => annotated source language AST

- Translate => target language AST

- Optimize => target language AST

- Pretty-print => target language text

Easy to extend with new components

Code Generation by Transformation

Guaranteeing Syntactically
Correct Target Code

Property: Syntactically correct target code

- Guarantee that generated code parses

Type correct AST = syntactically correct code

- AST types represent syntactic categories

‣Plus: Exp * Exp -> Exp

- Type check translation patterns

Language support

- Any programming language with a static type system

- And support for algebraic data types

Note: lexical syntax

Syntactically Correct Target Code

Type Checking Transformation Rules

16

Type checking terms in rules guarantees
syntactic correctness of generated code

Stratego 1

- Only checks arities of constructor applications, not types

- Transformation rules could be checked by the compiler

- Generic traversals make traditional type checking impossible

Workaround

- Meta-programming with concrete object syntax

Stratego 2

- A static analysis for Stratego that guarantees syntactic correctness

Guaranteeing Syntactically Correct Target Code in Stratego?

This paper defines a generic technique for embedding the
concrete syntax of an object language into a meta-
programming language.

Applied to Stratego as meta-language and Tiger as object
language.

Combines two advantages

- guarantee syntactic correctness of match and build patterns

- make rules more readable

https://doi.org/10.1007/3-540-45821-2_19

Concrete Object Syntax

19

Abstract syntax transformation

Concrete syntax transformation

Implementing Concrete Object Syntax

20

Embedding of object language into meta language

From Concrete Syntax to Abstract Syntax

21

parse

explode

pretty-print

Mixed AST

Pure AST

Meta Explode

22

How do you type check that?

Find term embedding

Explode it

23

The concrete syntax embedding techniques is not
specific to Stratego as meta-language. This paper
shows how to use it to embed DSLs into Java.

https://doi.org/10.1145/1035292.1029007

24

This paper generalizes the concrete syntax techniques
to all sorts of host and guest languages, with an
application to preventing injection attacks.

Injection attacks are caused by unhygienic
construction of code through which user input can be
turned into executable code.

doi:10.1016/j.scico.2009.05.004

Hygienic

A Generic Architecture

Hygienic Transformations

Hygienic Transformations

Does new variable in TraceProcedure not capture variables in e?

Guarantee that variables are not captured

- Which variables?

Object language name analysis for transformation rules

- E.g. apply Tiger constraint rules to patterns in rules

Existing approaches

- Hygienic macros in Scheme/Racket

- Higher-order abstract syntax

- Nominal abstract syntax

Research

- Hygienic transformations for more complex binding patterns

Guaranteeing Hygiene

Guaranteeing Type Correct
Target Code

Property: Type correct target code

- Guarantee that generated code type checks

Intrinsically-typed ASTs

- Encode type system in algebraic signature

- Including binding structure

- Language support: Generalized ADTs

Research

- Advanced type systems & binding patterns

Guaranteeing Type Correct Code

Semantics Preservation

Generated code has same interface as source code

Interface Preservation

Generated code produces values with the same type

Intrinsically-typed interpreters

- POPL’18: imperative languages

- CPP’20: linear languages

- Verify that interpreters are type preserving

- Including non-lexical binding patterns

Research

- how to do this for other transformations?

Type Preservation

Semantics preservation

- Generated code has the same behaviour as the source program

CompCert

- Certified C compiler

- Defines operational semantics of source language (most of C) and all

intermediate languages

- Mechanically verify that translations between IR preserve behaviour

‣ For all possible programs

- Or: verify that generated output has same behaviour as input

‣ For programs that compiler is applied to

Dynamic Semantics Preservation

37

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

